MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvf Structured version   Visualization version   GIF version

Theorem grpoinvf 29772
Description: Mapping of the inverse function of a group. (Contributed by NM, 29-Mar-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
grpoinvf (𝐺 ∈ GrpOp β†’ 𝑁:𝑋–1-1-onto→𝑋)

Proof of Theorem grpoinvf
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7365 . . . 4 (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ)) ∈ V
2 eqid 2732 . . . 4 (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ))) = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ)))
31, 2fnmpti 6690 . . 3 (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ))) Fn 𝑋
4 grpasscan1.1 . . . . 5 𝑋 = ran 𝐺
5 eqid 2732 . . . . 5 (GIdβ€˜πΊ) = (GIdβ€˜πΊ)
6 grpasscan1.2 . . . . 5 𝑁 = (invβ€˜πΊ)
74, 5, 6grpoinvfval 29762 . . . 4 (𝐺 ∈ GrpOp β†’ 𝑁 = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ))))
87fneq1d 6639 . . 3 (𝐺 ∈ GrpOp β†’ (𝑁 Fn 𝑋 ↔ (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ))) Fn 𝑋))
93, 8mpbiri 257 . 2 (𝐺 ∈ GrpOp β†’ 𝑁 Fn 𝑋)
10 fnrnfv 6948 . . . 4 (𝑁 Fn 𝑋 β†’ ran 𝑁 = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)})
119, 10syl 17 . . 3 (𝐺 ∈ GrpOp β†’ ran 𝑁 = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)})
124, 6grpoinvcl 29764 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ (π‘β€˜π‘¦) ∈ 𝑋)
134, 6grpo2inv 29771 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π‘¦)) = 𝑦)
1413eqcomd 2738 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ 𝑦 = (π‘β€˜(π‘β€˜π‘¦)))
15 fveq2 6888 . . . . . . . 8 (π‘₯ = (π‘β€˜π‘¦) β†’ (π‘β€˜π‘₯) = (π‘β€˜(π‘β€˜π‘¦)))
1615rspceeqv 3632 . . . . . . 7 (((π‘β€˜π‘¦) ∈ 𝑋 ∧ 𝑦 = (π‘β€˜(π‘β€˜π‘¦))) β†’ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯))
1712, 14, 16syl2anc 584 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯))
1817ex 413 . . . . 5 (𝐺 ∈ GrpOp β†’ (𝑦 ∈ 𝑋 β†’ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)))
19 simpr 485 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 = (π‘β€˜π‘₯)) β†’ 𝑦 = (π‘β€˜π‘₯))
204, 6grpoinvcl 29764 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) β†’ (π‘β€˜π‘₯) ∈ 𝑋)
2120adantr 481 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 = (π‘β€˜π‘₯)) β†’ (π‘β€˜π‘₯) ∈ 𝑋)
2219, 21eqeltrd 2833 . . . . . 6 (((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 = (π‘β€˜π‘₯)) β†’ 𝑦 ∈ 𝑋)
2322rexlimdva2 3157 . . . . 5 (𝐺 ∈ GrpOp β†’ (βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯) β†’ 𝑦 ∈ 𝑋))
2418, 23impbid 211 . . . 4 (𝐺 ∈ GrpOp β†’ (𝑦 ∈ 𝑋 ↔ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)))
2524eqabdv 2867 . . 3 (𝐺 ∈ GrpOp β†’ 𝑋 = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)})
2611, 25eqtr4d 2775 . 2 (𝐺 ∈ GrpOp β†’ ran 𝑁 = 𝑋)
27 fveq2 6888 . . . 4 ((π‘β€˜π‘₯) = (π‘β€˜π‘¦) β†’ (π‘β€˜(π‘β€˜π‘₯)) = (π‘β€˜(π‘β€˜π‘¦)))
284, 6grpo2inv 29771 . . . . . 6 ((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π‘₯)) = π‘₯)
2928, 13eqeqan12d 2746 . . . . 5 (((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) ∧ (𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘β€˜(π‘β€˜π‘₯)) = (π‘β€˜(π‘β€˜π‘¦)) ↔ π‘₯ = 𝑦))
3029anandis 676 . . . 4 ((𝐺 ∈ GrpOp ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘β€˜(π‘β€˜π‘₯)) = (π‘β€˜(π‘β€˜π‘¦)) ↔ π‘₯ = 𝑦))
3127, 30imbitrid 243 . . 3 ((𝐺 ∈ GrpOp ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘β€˜π‘₯) = (π‘β€˜π‘¦) β†’ π‘₯ = 𝑦))
3231ralrimivva 3200 . 2 (𝐺 ∈ GrpOp β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘β€˜π‘₯) = (π‘β€˜π‘¦) β†’ π‘₯ = 𝑦))
33 dff1o6 7269 . 2 (𝑁:𝑋–1-1-onto→𝑋 ↔ (𝑁 Fn 𝑋 ∧ ran 𝑁 = 𝑋 ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘β€˜π‘₯) = (π‘β€˜π‘¦) β†’ π‘₯ = 𝑦)))
349, 26, 32, 33syl3anbrc 1343 1 (𝐺 ∈ GrpOp β†’ 𝑁:𝑋–1-1-onto→𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  βˆƒwrex 3070   ↦ cmpt 5230  ran crn 5676   Fn wfn 6535  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  β„©crio 7360  (class class class)co 7405  GrpOpcgr 29729  GIdcgi 29730  invcgn 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-grpo 29733  df-gid 29734  df-ginv 29735
This theorem is referenced by:  nvinvfval  29880
  Copyright terms: Public domain W3C validator