MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvf Structured version   Visualization version   GIF version

Theorem grpoinvf 30294
Description: Mapping of the inverse function of a group. (Contributed by NM, 29-Mar-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
grpoinvf (𝐺 ∈ GrpOp β†’ 𝑁:𝑋–1-1-onto→𝑋)

Proof of Theorem grpoinvf
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7365 . . . 4 (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ)) ∈ V
2 eqid 2726 . . . 4 (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ))) = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ)))
31, 2fnmpti 6687 . . 3 (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ))) Fn 𝑋
4 grpasscan1.1 . . . . 5 𝑋 = ran 𝐺
5 eqid 2726 . . . . 5 (GIdβ€˜πΊ) = (GIdβ€˜πΊ)
6 grpasscan1.2 . . . . 5 𝑁 = (invβ€˜πΊ)
74, 5, 6grpoinvfval 30284 . . . 4 (𝐺 ∈ GrpOp β†’ 𝑁 = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ))))
87fneq1d 6636 . . 3 (𝐺 ∈ GrpOp β†’ (𝑁 Fn 𝑋 ↔ (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ))) Fn 𝑋))
93, 8mpbiri 258 . 2 (𝐺 ∈ GrpOp β†’ 𝑁 Fn 𝑋)
10 fnrnfv 6945 . . . 4 (𝑁 Fn 𝑋 β†’ ran 𝑁 = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)})
119, 10syl 17 . . 3 (𝐺 ∈ GrpOp β†’ ran 𝑁 = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)})
124, 6grpoinvcl 30286 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ (π‘β€˜π‘¦) ∈ 𝑋)
134, 6grpo2inv 30293 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π‘¦)) = 𝑦)
1413eqcomd 2732 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ 𝑦 = (π‘β€˜(π‘β€˜π‘¦)))
15 fveq2 6885 . . . . . . . 8 (π‘₯ = (π‘β€˜π‘¦) β†’ (π‘β€˜π‘₯) = (π‘β€˜(π‘β€˜π‘¦)))
1615rspceeqv 3628 . . . . . . 7 (((π‘β€˜π‘¦) ∈ 𝑋 ∧ 𝑦 = (π‘β€˜(π‘β€˜π‘¦))) β†’ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯))
1712, 14, 16syl2anc 583 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯))
1817ex 412 . . . . 5 (𝐺 ∈ GrpOp β†’ (𝑦 ∈ 𝑋 β†’ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)))
19 simpr 484 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 = (π‘β€˜π‘₯)) β†’ 𝑦 = (π‘β€˜π‘₯))
204, 6grpoinvcl 30286 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) β†’ (π‘β€˜π‘₯) ∈ 𝑋)
2120adantr 480 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 = (π‘β€˜π‘₯)) β†’ (π‘β€˜π‘₯) ∈ 𝑋)
2219, 21eqeltrd 2827 . . . . . 6 (((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 = (π‘β€˜π‘₯)) β†’ 𝑦 ∈ 𝑋)
2322rexlimdva2 3151 . . . . 5 (𝐺 ∈ GrpOp β†’ (βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯) β†’ 𝑦 ∈ 𝑋))
2418, 23impbid 211 . . . 4 (𝐺 ∈ GrpOp β†’ (𝑦 ∈ 𝑋 ↔ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)))
2524eqabdv 2861 . . 3 (𝐺 ∈ GrpOp β†’ 𝑋 = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)})
2611, 25eqtr4d 2769 . 2 (𝐺 ∈ GrpOp β†’ ran 𝑁 = 𝑋)
27 fveq2 6885 . . . 4 ((π‘β€˜π‘₯) = (π‘β€˜π‘¦) β†’ (π‘β€˜(π‘β€˜π‘₯)) = (π‘β€˜(π‘β€˜π‘¦)))
284, 6grpo2inv 30293 . . . . . 6 ((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π‘₯)) = π‘₯)
2928, 13eqeqan12d 2740 . . . . 5 (((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) ∧ (𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘β€˜(π‘β€˜π‘₯)) = (π‘β€˜(π‘β€˜π‘¦)) ↔ π‘₯ = 𝑦))
3029anandis 675 . . . 4 ((𝐺 ∈ GrpOp ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘β€˜(π‘β€˜π‘₯)) = (π‘β€˜(π‘β€˜π‘¦)) ↔ π‘₯ = 𝑦))
3127, 30imbitrid 243 . . 3 ((𝐺 ∈ GrpOp ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘β€˜π‘₯) = (π‘β€˜π‘¦) β†’ π‘₯ = 𝑦))
3231ralrimivva 3194 . 2 (𝐺 ∈ GrpOp β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘β€˜π‘₯) = (π‘β€˜π‘¦) β†’ π‘₯ = 𝑦))
33 dff1o6 7269 . 2 (𝑁:𝑋–1-1-onto→𝑋 ↔ (𝑁 Fn 𝑋 ∧ ran 𝑁 = 𝑋 ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘β€˜π‘₯) = (π‘β€˜π‘¦) β†’ π‘₯ = 𝑦)))
349, 26, 32, 33syl3anbrc 1340 1 (𝐺 ∈ GrpOp β†’ 𝑁:𝑋–1-1-onto→𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  {cab 2703  βˆ€wral 3055  βˆƒwrex 3064   ↦ cmpt 5224  ran crn 5670   Fn wfn 6532  β€“1-1-ontoβ†’wf1o 6536  β€˜cfv 6537  β„©crio 7360  (class class class)co 7405  GrpOpcgr 30251  GIdcgi 30252  invcgn 30253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-grpo 30255  df-gid 30256  df-ginv 30257
This theorem is referenced by:  nvinvfval  30402
  Copyright terms: Public domain W3C validator