MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvf Structured version   Visualization version   GIF version

Theorem grpoinvf 30358
Description: Mapping of the inverse function of a group. (Contributed by NM, 29-Mar-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
grpoinvf (𝐺 ∈ GrpOp β†’ 𝑁:𝑋–1-1-onto→𝑋)

Proof of Theorem grpoinvf
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7374 . . . 4 (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ)) ∈ V
2 eqid 2725 . . . 4 (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ))) = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ)))
31, 2fnmpti 6691 . . 3 (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ))) Fn 𝑋
4 grpasscan1.1 . . . . 5 𝑋 = ran 𝐺
5 eqid 2725 . . . . 5 (GIdβ€˜πΊ) = (GIdβ€˜πΊ)
6 grpasscan1.2 . . . . 5 𝑁 = (invβ€˜πΊ)
74, 5, 6grpoinvfval 30348 . . . 4 (𝐺 ∈ GrpOp β†’ 𝑁 = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ))))
87fneq1d 6640 . . 3 (𝐺 ∈ GrpOp β†’ (𝑁 Fn 𝑋 ↔ (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = (GIdβ€˜πΊ))) Fn 𝑋))
93, 8mpbiri 257 . 2 (𝐺 ∈ GrpOp β†’ 𝑁 Fn 𝑋)
10 fnrnfv 6951 . . . 4 (𝑁 Fn 𝑋 β†’ ran 𝑁 = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)})
119, 10syl 17 . . 3 (𝐺 ∈ GrpOp β†’ ran 𝑁 = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)})
124, 6grpoinvcl 30350 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ (π‘β€˜π‘¦) ∈ 𝑋)
134, 6grpo2inv 30357 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π‘¦)) = 𝑦)
1413eqcomd 2731 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ 𝑦 = (π‘β€˜(π‘β€˜π‘¦)))
15 fveq2 6890 . . . . . . . 8 (π‘₯ = (π‘β€˜π‘¦) β†’ (π‘β€˜π‘₯) = (π‘β€˜(π‘β€˜π‘¦)))
1615rspceeqv 3623 . . . . . . 7 (((π‘β€˜π‘¦) ∈ 𝑋 ∧ 𝑦 = (π‘β€˜(π‘β€˜π‘¦))) β†’ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯))
1712, 14, 16syl2anc 582 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯))
1817ex 411 . . . . 5 (𝐺 ∈ GrpOp β†’ (𝑦 ∈ 𝑋 β†’ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)))
19 simpr 483 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 = (π‘β€˜π‘₯)) β†’ 𝑦 = (π‘β€˜π‘₯))
204, 6grpoinvcl 30350 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) β†’ (π‘β€˜π‘₯) ∈ 𝑋)
2120adantr 479 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 = (π‘β€˜π‘₯)) β†’ (π‘β€˜π‘₯) ∈ 𝑋)
2219, 21eqeltrd 2825 . . . . . 6 (((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 = (π‘β€˜π‘₯)) β†’ 𝑦 ∈ 𝑋)
2322rexlimdva2 3147 . . . . 5 (𝐺 ∈ GrpOp β†’ (βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯) β†’ 𝑦 ∈ 𝑋))
2418, 23impbid 211 . . . 4 (𝐺 ∈ GrpOp β†’ (𝑦 ∈ 𝑋 ↔ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)))
2524eqabdv 2859 . . 3 (𝐺 ∈ GrpOp β†’ 𝑋 = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑦 = (π‘β€˜π‘₯)})
2611, 25eqtr4d 2768 . 2 (𝐺 ∈ GrpOp β†’ ran 𝑁 = 𝑋)
27 fveq2 6890 . . . 4 ((π‘β€˜π‘₯) = (π‘β€˜π‘¦) β†’ (π‘β€˜(π‘β€˜π‘₯)) = (π‘β€˜(π‘β€˜π‘¦)))
284, 6grpo2inv 30357 . . . . . 6 ((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π‘₯)) = π‘₯)
2928, 13eqeqan12d 2739 . . . . 5 (((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋) ∧ (𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘β€˜(π‘β€˜π‘₯)) = (π‘β€˜(π‘β€˜π‘¦)) ↔ π‘₯ = 𝑦))
3029anandis 676 . . . 4 ((𝐺 ∈ GrpOp ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘β€˜(π‘β€˜π‘₯)) = (π‘β€˜(π‘β€˜π‘¦)) ↔ π‘₯ = 𝑦))
3127, 30imbitrid 243 . . 3 ((𝐺 ∈ GrpOp ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘β€˜π‘₯) = (π‘β€˜π‘¦) β†’ π‘₯ = 𝑦))
3231ralrimivva 3191 . 2 (𝐺 ∈ GrpOp β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘β€˜π‘₯) = (π‘β€˜π‘¦) β†’ π‘₯ = 𝑦))
33 dff1o6 7278 . 2 (𝑁:𝑋–1-1-onto→𝑋 ↔ (𝑁 Fn 𝑋 ∧ ran 𝑁 = 𝑋 ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘β€˜π‘₯) = (π‘β€˜π‘¦) β†’ π‘₯ = 𝑦)))
349, 26, 32, 33syl3anbrc 1340 1 (𝐺 ∈ GrpOp β†’ 𝑁:𝑋–1-1-onto→𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  {cab 2702  βˆ€wral 3051  βˆƒwrex 3060   ↦ cmpt 5224  ran crn 5671   Fn wfn 6536  β€“1-1-ontoβ†’wf1o 6540  β€˜cfv 6541  β„©crio 7369  (class class class)co 7414  GrpOpcgr 30315  GIdcgi 30316  invcgn 30317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-grpo 30319  df-gid 30320  df-ginv 30321
This theorem is referenced by:  nvinvfval  30466
  Copyright terms: Public domain W3C validator