MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omord2 Structured version   Visualization version   GIF version

Theorem omord2 8518
Description: Ordering property of ordinal multiplication. (Contributed by NM, 25-Dec-2004.)
Assertion
Ref Expression
omord2 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ (๐ด โˆˆ ๐ต โ†” (๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต)))

Proof of Theorem omord2
StepHypRef Expression
1 omordi 8517 . . 3 (((๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ (๐ด โˆˆ ๐ต โ†’ (๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต)))
213adantl1 1167 . 2 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ (๐ด โˆˆ ๐ต โ†’ (๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต)))
3 oveq2 7369 . . . . . 6 (๐ด = ๐ต โ†’ (๐ถ ยทo ๐ด) = (๐ถ ยทo ๐ต))
43a1i 11 . . . . 5 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ (๐ด = ๐ต โ†’ (๐ถ ยทo ๐ด) = (๐ถ ยทo ๐ต)))
5 omordi 8517 . . . . . 6 (((๐ด โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ (๐ต โˆˆ ๐ด โ†’ (๐ถ ยทo ๐ต) โˆˆ (๐ถ ยทo ๐ด)))
653adantl2 1168 . . . . 5 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ (๐ต โˆˆ ๐ด โ†’ (๐ถ ยทo ๐ต) โˆˆ (๐ถ ยทo ๐ด)))
74, 6orim12d 964 . . . 4 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ ((๐ด = ๐ต โˆจ ๐ต โˆˆ ๐ด) โ†’ ((๐ถ ยทo ๐ด) = (๐ถ ยทo ๐ต) โˆจ (๐ถ ยทo ๐ต) โˆˆ (๐ถ ยทo ๐ด))))
87con3d 152 . . 3 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ (ยฌ ((๐ถ ยทo ๐ด) = (๐ถ ยทo ๐ต) โˆจ (๐ถ ยทo ๐ต) โˆˆ (๐ถ ยทo ๐ด)) โ†’ ยฌ (๐ด = ๐ต โˆจ ๐ต โˆˆ ๐ด)))
9 omcl 8486 . . . . . . . 8 ((๐ถ โˆˆ On โˆง ๐ด โˆˆ On) โ†’ (๐ถ ยทo ๐ด) โˆˆ On)
10 omcl 8486 . . . . . . . 8 ((๐ถ โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (๐ถ ยทo ๐ต) โˆˆ On)
11 eloni 6331 . . . . . . . . 9 ((๐ถ ยทo ๐ด) โˆˆ On โ†’ Ord (๐ถ ยทo ๐ด))
12 eloni 6331 . . . . . . . . 9 ((๐ถ ยทo ๐ต) โˆˆ On โ†’ Ord (๐ถ ยทo ๐ต))
13 ordtri2 6356 . . . . . . . . 9 ((Ord (๐ถ ยทo ๐ด) โˆง Ord (๐ถ ยทo ๐ต)) โ†’ ((๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต) โ†” ยฌ ((๐ถ ยทo ๐ด) = (๐ถ ยทo ๐ต) โˆจ (๐ถ ยทo ๐ต) โˆˆ (๐ถ ยทo ๐ด))))
1411, 12, 13syl2an 597 . . . . . . . 8 (((๐ถ ยทo ๐ด) โˆˆ On โˆง (๐ถ ยทo ๐ต) โˆˆ On) โ†’ ((๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต) โ†” ยฌ ((๐ถ ยทo ๐ด) = (๐ถ ยทo ๐ต) โˆจ (๐ถ ยทo ๐ต) โˆˆ (๐ถ ยทo ๐ด))))
159, 10, 14syl2an 597 . . . . . . 7 (((๐ถ โˆˆ On โˆง ๐ด โˆˆ On) โˆง (๐ถ โˆˆ On โˆง ๐ต โˆˆ On)) โ†’ ((๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต) โ†” ยฌ ((๐ถ ยทo ๐ด) = (๐ถ ยทo ๐ต) โˆจ (๐ถ ยทo ๐ต) โˆˆ (๐ถ ยทo ๐ด))))
1615anandis 677 . . . . . 6 ((๐ถ โˆˆ On โˆง (๐ด โˆˆ On โˆง ๐ต โˆˆ On)) โ†’ ((๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต) โ†” ยฌ ((๐ถ ยทo ๐ด) = (๐ถ ยทo ๐ต) โˆจ (๐ถ ยทo ๐ต) โˆˆ (๐ถ ยทo ๐ด))))
1716ancoms 460 . . . . 5 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โˆง ๐ถ โˆˆ On) โ†’ ((๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต) โ†” ยฌ ((๐ถ ยทo ๐ด) = (๐ถ ยทo ๐ต) โˆจ (๐ถ ยทo ๐ต) โˆˆ (๐ถ ยทo ๐ด))))
18173impa 1111 . . . 4 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โ†’ ((๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต) โ†” ยฌ ((๐ถ ยทo ๐ด) = (๐ถ ยทo ๐ต) โˆจ (๐ถ ยทo ๐ต) โˆˆ (๐ถ ยทo ๐ด))))
1918adantr 482 . . 3 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ ((๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต) โ†” ยฌ ((๐ถ ยทo ๐ด) = (๐ถ ยทo ๐ต) โˆจ (๐ถ ยทo ๐ต) โˆˆ (๐ถ ยทo ๐ด))))
20 eloni 6331 . . . . . 6 (๐ด โˆˆ On โ†’ Ord ๐ด)
21 eloni 6331 . . . . . 6 (๐ต โˆˆ On โ†’ Ord ๐ต)
22 ordtri2 6356 . . . . . 6 ((Ord ๐ด โˆง Ord ๐ต) โ†’ (๐ด โˆˆ ๐ต โ†” ยฌ (๐ด = ๐ต โˆจ ๐ต โˆˆ ๐ด)))
2320, 21, 22syl2an 597 . . . . 5 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (๐ด โˆˆ ๐ต โ†” ยฌ (๐ด = ๐ต โˆจ ๐ต โˆˆ ๐ด)))
24233adant3 1133 . . . 4 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โ†’ (๐ด โˆˆ ๐ต โ†” ยฌ (๐ด = ๐ต โˆจ ๐ต โˆˆ ๐ด)))
2524adantr 482 . . 3 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ (๐ด โˆˆ ๐ต โ†” ยฌ (๐ด = ๐ต โˆจ ๐ต โˆˆ ๐ด)))
268, 19, 253imtr4d 294 . 2 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ ((๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต) โ†’ ๐ด โˆˆ ๐ต))
272, 26impbid 211 1 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ (๐ด โˆˆ ๐ต โ†” (๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต)))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 397   โˆจ wo 846   โˆง w3a 1088   = wceq 1542   โˆˆ wcel 2107  โˆ…c0 4286  Ord word 6320  Oncon0 6321  (class class class)co 7361   ยทo comu 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-oadd 8420  df-omul 8421
This theorem is referenced by:  omord  8519  omword  8521  oeeui  8553  omabs  8601  omxpenlem  9023  cantnflt  9616  cnfcom  9644
  Copyright terms: Public domain W3C validator