Proof of Theorem omord2
| Step | Hyp | Ref
| Expression |
| 1 | | omordi 8604 |
. . 3
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 2 | 1 | 3adantl1 1167 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 3 | | oveq2 7439 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵)) |
| 4 | 3 | a1i 11 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐶) → (𝐴 = 𝐵 → (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))) |
| 5 | | omordi 8604 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐶) → (𝐵 ∈ 𝐴 → (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))) |
| 6 | 5 | 3adantl2 1168 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐶) → (𝐵 ∈ 𝐴 → (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))) |
| 7 | 4, 6 | orim12d 967 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐶) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 8 | 7 | con3d 152 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐶) → (¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)) → ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 9 | | omcl 8574 |
. . . . . . . 8
⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ·o 𝐴) ∈ On) |
| 10 | | omcl 8574 |
. . . . . . . 8
⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ·o 𝐵) ∈ On) |
| 11 | | eloni 6394 |
. . . . . . . . 9
⊢ ((𝐶 ·o 𝐴) ∈ On → Ord (𝐶 ·o 𝐴)) |
| 12 | | eloni 6394 |
. . . . . . . . 9
⊢ ((𝐶 ·o 𝐵) ∈ On → Ord (𝐶 ·o 𝐵)) |
| 13 | | ordtri2 6419 |
. . . . . . . . 9
⊢ ((Ord
(𝐶 ·o
𝐴) ∧ Ord (𝐶 ·o 𝐵)) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 14 | 11, 12, 13 | syl2an 596 |
. . . . . . . 8
⊢ (((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 15 | 9, 10, 14 | syl2an 596 |
. . . . . . 7
⊢ (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 16 | 15 | anandis 678 |
. . . . . 6
⊢ ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 17 | 16 | ancoms 458 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 18 | 17 | 3impa 1110 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 19 | 18 | adantr 480 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐶) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 20 | | eloni 6394 |
. . . . . 6
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 21 | | eloni 6394 |
. . . . . 6
⊢ (𝐵 ∈ On → Ord 𝐵) |
| 22 | | ordtri2 6419 |
. . . . . 6
⊢ ((Ord
𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 23 | 20, 21, 22 | syl2an 596 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 24 | 23 | 3adant3 1133 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 25 | 24 | adantr 480 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐶) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 26 | 8, 19, 25 | 3imtr4d 294 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐶) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐴 ∈ 𝐵)) |
| 27 | 2, 26 | impbid 212 |
1
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |