Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ocorth | Structured version Visualization version GIF version |
Description: Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ocorth | ⊢ (𝐻 ⊆ ℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocel 29375 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (𝐵 ∈ (⊥‘𝐻) ↔ (𝐵 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0))) | |
2 | 1 | simplbda 503 | . . . . 5 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻)) → ∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0) |
3 | 2 | adantl 485 | . . . 4 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → ∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0) |
4 | oveq2 7230 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐵 ·ih 𝑥) = (𝐵 ·ih 𝐴)) | |
5 | 4 | eqeq1d 2740 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐵 ·ih 𝑥) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) |
6 | 5 | rspcv 3539 | . . . . . 6 ⊢ (𝐴 ∈ 𝐻 → (∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐵 ·ih 𝐴) = 0)) |
7 | 6 | ad2antlr 727 | . . . . 5 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐵 ·ih 𝐴) = 0)) |
8 | ssel2 3904 | . . . . . 6 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | |
9 | ocss 29379 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) ⊆ ℋ) | |
10 | 9 | sselda 3910 | . . . . . 6 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻)) → 𝐵 ∈ ℋ) |
11 | orthcom 29202 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) | |
12 | 8, 10, 11 | syl2an 599 | . . . . 5 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) |
13 | 7, 12 | sylibrd 262 | . . . 4 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝐵) = 0)) |
14 | 3, 13 | mpd 15 | . . 3 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0) |
15 | 14 | anandis 678 | . 2 ⊢ ((𝐻 ⊆ ℋ ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0) |
16 | 15 | ex 416 | 1 ⊢ (𝐻 ⊆ ℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ∀wral 3062 ⊆ wss 3875 ‘cfv 6389 (class class class)co 7222 0cc0 10742 ℋchba 29013 ·ih csp 29016 ⊥cort 29024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-hilex 29093 ax-hfvadd 29094 ax-hv0cl 29097 ax-hfvmul 29099 ax-hvmul0 29104 ax-hfi 29173 ax-his1 29176 ax-his2 29177 ax-his3 29178 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-op 4557 df-uni 4829 df-iun 4915 df-br 5063 df-opab 5125 df-mpt 5145 df-id 5464 df-po 5477 df-so 5478 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-er 8400 df-en 8636 df-dom 8637 df-sdom 8638 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-div 11503 df-2 11906 df-cj 14675 df-re 14676 df-im 14677 df-sh 29301 df-oc 29346 |
This theorem is referenced by: shocorth 29386 ococss 29387 riesz3i 30156 |
Copyright terms: Public domain | W3C validator |