| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ocorth | Structured version Visualization version GIF version | ||
| Description: Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ocorth | ⊢ (𝐻 ⊆ ℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocel 31216 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (𝐵 ∈ (⊥‘𝐻) ↔ (𝐵 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0))) | |
| 2 | 1 | simplbda 499 | . . . . 5 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻)) → ∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → ∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0) |
| 4 | oveq2 7397 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐵 ·ih 𝑥) = (𝐵 ·ih 𝐴)) | |
| 5 | 4 | eqeq1d 2732 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐵 ·ih 𝑥) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) |
| 6 | 5 | rspcv 3587 | . . . . . 6 ⊢ (𝐴 ∈ 𝐻 → (∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐵 ·ih 𝐴) = 0)) |
| 7 | 6 | ad2antlr 727 | . . . . 5 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐵 ·ih 𝐴) = 0)) |
| 8 | ssel2 3943 | . . . . . 6 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | |
| 9 | ocss 31220 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) ⊆ ℋ) | |
| 10 | 9 | sselda 3948 | . . . . . 6 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻)) → 𝐵 ∈ ℋ) |
| 11 | orthcom 31043 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) | |
| 12 | 8, 10, 11 | syl2an 596 | . . . . 5 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) |
| 13 | 7, 12 | sylibrd 259 | . . . 4 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝐵) = 0)) |
| 14 | 3, 13 | mpd 15 | . . 3 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0) |
| 15 | 14 | anandis 678 | . 2 ⊢ ((𝐻 ⊆ ℋ ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0) |
| 16 | 15 | ex 412 | 1 ⊢ (𝐻 ⊆ ℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3916 ‘cfv 6513 (class class class)co 7389 0cc0 11074 ℋchba 30854 ·ih csp 30857 ⊥cort 30865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-hilex 30934 ax-hfvadd 30935 ax-hv0cl 30938 ax-hfvmul 30940 ax-hvmul0 30945 ax-hfi 31014 ax-his1 31017 ax-his2 31018 ax-his3 31019 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-cj 15071 df-re 15072 df-im 15073 df-sh 31142 df-oc 31187 |
| This theorem is referenced by: shocorth 31227 ococss 31228 riesz3i 31997 |
| Copyright terms: Public domain | W3C validator |