HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocorth Structured version   Visualization version   GIF version

Theorem ocorth 29385
Description: Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ocorth (𝐻 ⊆ ℋ → ((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0))

Proof of Theorem ocorth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ocel 29375 . . . . . 6 (𝐻 ⊆ ℋ → (𝐵 ∈ (⊥‘𝐻) ↔ (𝐵 ∈ ℋ ∧ ∀𝑥𝐻 (𝐵 ·ih 𝑥) = 0)))
21simplbda 503 . . . . 5 ((𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻)) → ∀𝑥𝐻 (𝐵 ·ih 𝑥) = 0)
32adantl 485 . . . 4 (((𝐻 ⊆ ℋ ∧ 𝐴𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → ∀𝑥𝐻 (𝐵 ·ih 𝑥) = 0)
4 oveq2 7230 . . . . . . . 8 (𝑥 = 𝐴 → (𝐵 ·ih 𝑥) = (𝐵 ·ih 𝐴))
54eqeq1d 2740 . . . . . . 7 (𝑥 = 𝐴 → ((𝐵 ·ih 𝑥) = 0 ↔ (𝐵 ·ih 𝐴) = 0))
65rspcv 3539 . . . . . 6 (𝐴𝐻 → (∀𝑥𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐵 ·ih 𝐴) = 0))
76ad2antlr 727 . . . . 5 (((𝐻 ⊆ ℋ ∧ 𝐴𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (∀𝑥𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐵 ·ih 𝐴) = 0))
8 ssel2 3904 . . . . . 6 ((𝐻 ⊆ ℋ ∧ 𝐴𝐻) → 𝐴 ∈ ℋ)
9 ocss 29379 . . . . . . 7 (𝐻 ⊆ ℋ → (⊥‘𝐻) ⊆ ℋ)
109sselda 3910 . . . . . 6 ((𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻)) → 𝐵 ∈ ℋ)
11 orthcom 29202 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0))
128, 10, 11syl2an 599 . . . . 5 (((𝐻 ⊆ ℋ ∧ 𝐴𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0))
137, 12sylibrd 262 . . . 4 (((𝐻 ⊆ ℋ ∧ 𝐴𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (∀𝑥𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝐵) = 0))
143, 13mpd 15 . . 3 (((𝐻 ⊆ ℋ ∧ 𝐴𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0)
1514anandis 678 . 2 ((𝐻 ⊆ ℋ ∧ (𝐴𝐻𝐵 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0)
1615ex 416 1 (𝐻 ⊆ ℋ → ((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2111  wral 3062  wss 3875  cfv 6389  (class class class)co 7222  0cc0 10742  chba 29013   ·ih csp 29016  cort 29024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5201  ax-nul 5208  ax-pow 5267  ax-pr 5331  ax-un 7532  ax-resscn 10799  ax-1cn 10800  ax-icn 10801  ax-addcl 10802  ax-addrcl 10803  ax-mulcl 10804  ax-mulrcl 10805  ax-mulcom 10806  ax-addass 10807  ax-mulass 10808  ax-distr 10809  ax-i2m1 10810  ax-1ne0 10811  ax-1rid 10812  ax-rnegex 10813  ax-rrecex 10814  ax-cnre 10815  ax-pre-lttri 10816  ax-pre-lttrn 10817  ax-pre-ltadd 10818  ax-pre-mulgt0 10819  ax-hilex 29093  ax-hfvadd 29094  ax-hv0cl 29097  ax-hfvmul 29099  ax-hvmul0 29104  ax-hfi 29173  ax-his1 29176  ax-his2 29177  ax-his3 29178
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3417  df-sbc 3704  df-csb 3821  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-nul 4247  df-if 4449  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4829  df-iun 4915  df-br 5063  df-opab 5125  df-mpt 5145  df-id 5464  df-po 5477  df-so 5478  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-res 5572  df-ima 5573  df-iota 6347  df-fun 6391  df-fn 6392  df-f 6393  df-f1 6394  df-fo 6395  df-f1o 6396  df-fv 6397  df-riota 7179  df-ov 7225  df-oprab 7226  df-mpo 7227  df-er 8400  df-en 8636  df-dom 8637  df-sdom 8638  df-pnf 10882  df-mnf 10883  df-xr 10884  df-ltxr 10885  df-le 10886  df-sub 11077  df-neg 11078  df-div 11503  df-2 11906  df-cj 14675  df-re 14676  df-im 14677  df-sh 29301  df-oc 29346
This theorem is referenced by:  shocorth  29386  ococss  29387  riesz3i  30156
  Copyright terms: Public domain W3C validator