HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocorth Structured version   Visualization version   GIF version

Theorem ocorth 31016
Description: Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ocorth (𝐻 ⊆ ℋ → ((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0))

Proof of Theorem ocorth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ocel 31006 . . . . . 6 (𝐻 ⊆ ℋ → (𝐵 ∈ (⊥‘𝐻) ↔ (𝐵 ∈ ℋ ∧ ∀𝑥𝐻 (𝐵 ·ih 𝑥) = 0)))
21simplbda 499 . . . . 5 ((𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻)) → ∀𝑥𝐻 (𝐵 ·ih 𝑥) = 0)
32adantl 481 . . . 4 (((𝐻 ⊆ ℋ ∧ 𝐴𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → ∀𝑥𝐻 (𝐵 ·ih 𝑥) = 0)
4 oveq2 7410 . . . . . . . 8 (𝑥 = 𝐴 → (𝐵 ·ih 𝑥) = (𝐵 ·ih 𝐴))
54eqeq1d 2726 . . . . . . 7 (𝑥 = 𝐴 → ((𝐵 ·ih 𝑥) = 0 ↔ (𝐵 ·ih 𝐴) = 0))
65rspcv 3600 . . . . . 6 (𝐴𝐻 → (∀𝑥𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐵 ·ih 𝐴) = 0))
76ad2antlr 724 . . . . 5 (((𝐻 ⊆ ℋ ∧ 𝐴𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (∀𝑥𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐵 ·ih 𝐴) = 0))
8 ssel2 3970 . . . . . 6 ((𝐻 ⊆ ℋ ∧ 𝐴𝐻) → 𝐴 ∈ ℋ)
9 ocss 31010 . . . . . . 7 (𝐻 ⊆ ℋ → (⊥‘𝐻) ⊆ ℋ)
109sselda 3975 . . . . . 6 ((𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻)) → 𝐵 ∈ ℋ)
11 orthcom 30833 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0))
128, 10, 11syl2an 595 . . . . 5 (((𝐻 ⊆ ℋ ∧ 𝐴𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0))
137, 12sylibrd 259 . . . 4 (((𝐻 ⊆ ℋ ∧ 𝐴𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (∀𝑥𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝐵) = 0))
143, 13mpd 15 . . 3 (((𝐻 ⊆ ℋ ∧ 𝐴𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0)
1514anandis 675 . 2 ((𝐻 ⊆ ℋ ∧ (𝐴𝐻𝐵 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0)
1615ex 412 1 (𝐻 ⊆ ℋ → ((𝐴𝐻𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3053  wss 3941  cfv 6534  (class class class)co 7402  0cc0 11107  chba 30644   ·ih csp 30647  cort 30655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-hilex 30724  ax-hfvadd 30725  ax-hv0cl 30728  ax-hfvmul 30730  ax-hvmul0 30735  ax-hfi 30804  ax-his1 30807  ax-his2 30808  ax-his3 30809
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-2 12273  df-cj 15044  df-re 15045  df-im 15046  df-sh 30932  df-oc 30977
This theorem is referenced by:  shocorth  31017  ococss  31018  riesz3i  31787
  Copyright terms: Public domain W3C validator