| Hilbert Space Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > HSE Home > Th. List > ocorth | Structured version Visualization version GIF version | ||
| Description: Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| ocorth | ⊢ (𝐻 ⊆ ℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ocel 31227 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (𝐵 ∈ (⊥‘𝐻) ↔ (𝐵 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0))) | |
| 2 | 1 | simplbda 499 | . . . . 5 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻)) → ∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0) | 
| 3 | 2 | adantl 481 | . . . 4 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → ∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0) | 
| 4 | oveq2 7420 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐵 ·ih 𝑥) = (𝐵 ·ih 𝐴)) | |
| 5 | 4 | eqeq1d 2736 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐵 ·ih 𝑥) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) | 
| 6 | 5 | rspcv 3601 | . . . . . 6 ⊢ (𝐴 ∈ 𝐻 → (∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐵 ·ih 𝐴) = 0)) | 
| 7 | 6 | ad2antlr 727 | . . . . 5 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐵 ·ih 𝐴) = 0)) | 
| 8 | ssel2 3958 | . . . . . 6 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | |
| 9 | ocss 31231 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) ⊆ ℋ) | |
| 10 | 9 | sselda 3963 | . . . . . 6 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻)) → 𝐵 ∈ ℋ) | 
| 11 | orthcom 31054 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) | |
| 12 | 8, 10, 11 | syl2an 596 | . . . . 5 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) | 
| 13 | 7, 12 | sylibrd 259 | . . . 4 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝐵) = 0)) | 
| 14 | 3, 13 | mpd 15 | . . 3 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0) | 
| 15 | 14 | anandis 678 | . 2 ⊢ ((𝐻 ⊆ ℋ ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0) | 
| 16 | 15 | ex 412 | 1 ⊢ (𝐻 ⊆ ℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 ‘cfv 6540 (class class class)co 7412 0cc0 11136 ℋchba 30865 ·ih csp 30868 ⊥cort 30876 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-hilex 30945 ax-hfvadd 30946 ax-hv0cl 30949 ax-hfvmul 30951 ax-hvmul0 30956 ax-hfi 31025 ax-his1 31028 ax-his2 31029 ax-his3 31030 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-cj 15119 df-re 15120 df-im 15121 df-sh 31153 df-oc 31198 | 
| This theorem is referenced by: shocorth 31238 ococss 31239 riesz3i 32008 | 
| Copyright terms: Public domain | W3C validator |