| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ocorth | Structured version Visualization version GIF version | ||
| Description: Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ocorth | ⊢ (𝐻 ⊆ ℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocel 31217 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (𝐵 ∈ (⊥‘𝐻) ↔ (𝐵 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0))) | |
| 2 | 1 | simplbda 499 | . . . . 5 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻)) → ∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → ∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0) |
| 4 | oveq2 7402 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐵 ·ih 𝑥) = (𝐵 ·ih 𝐴)) | |
| 5 | 4 | eqeq1d 2732 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐵 ·ih 𝑥) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) |
| 6 | 5 | rspcv 3593 | . . . . . 6 ⊢ (𝐴 ∈ 𝐻 → (∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐵 ·ih 𝐴) = 0)) |
| 7 | 6 | ad2antlr 727 | . . . . 5 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐵 ·ih 𝐴) = 0)) |
| 8 | ssel2 3949 | . . . . . 6 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | |
| 9 | ocss 31221 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) ⊆ ℋ) | |
| 10 | 9 | sselda 3954 | . . . . . 6 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻)) → 𝐵 ∈ ℋ) |
| 11 | orthcom 31044 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) | |
| 12 | 8, 10, 11 | syl2an 596 | . . . . 5 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) |
| 13 | 7, 12 | sylibrd 259 | . . . 4 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (∀𝑥 ∈ 𝐻 (𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝐵) = 0)) |
| 14 | 3, 13 | mpd 15 | . . 3 ⊢ (((𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻) ∧ (𝐻 ⊆ ℋ ∧ 𝐵 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0) |
| 15 | 14 | anandis 678 | . 2 ⊢ ((𝐻 ⊆ ℋ ∧ (𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0) |
| 16 | 15 | ex 412 | 1 ⊢ (𝐻 ⊆ ℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ⊆ wss 3922 ‘cfv 6519 (class class class)co 7394 0cc0 11086 ℋchba 30855 ·ih csp 30858 ⊥cort 30866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-hilex 30935 ax-hfvadd 30936 ax-hv0cl 30939 ax-hfvmul 30941 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-cj 15075 df-re 15076 df-im 15077 df-sh 31143 df-oc 31188 |
| This theorem is referenced by: shocorth 31228 ococss 31229 riesz3i 31998 |
| Copyright terms: Public domain | W3C validator |