MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgioo Structured version   Visualization version   GIF version

Theorem tgioo 23401
Description: The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
tgioo.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tgioo (topGen‘ran (,)) = 𝐽

Proof of Theorem tgioo
Dummy variables 𝑥 𝑦 𝑧 𝑎 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . 4 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 23396 . . 3 𝐷 ∈ (∞Met‘ℝ)
3 tgioo.2 . . . 4 𝐽 = (MetOpen‘𝐷)
43mopnval 23045 . . 3 (𝐷 ∈ (∞Met‘ℝ) → 𝐽 = (topGen‘ran (ball‘𝐷)))
52, 4ax-mp 5 . 2 𝐽 = (topGen‘ran (ball‘𝐷))
61blssioo 23400 . . 3 ran (ball‘𝐷) ⊆ ran (,)
7 elssuni 4830 . . . . . . 7 (𝑣 ∈ ran (,) → 𝑣 ran (,))
8 unirnioo 12827 . . . . . . 7 ℝ = ran (,)
97, 8sseqtrrdi 3966 . . . . . 6 (𝑣 ∈ ran (,) → 𝑣 ⊆ ℝ)
10 retopbas 23366 . . . . . . . . . 10 ran (,) ∈ TopBases
1110a1i 11 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → ran (,) ∈ TopBases)
12 simpl 486 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑣 ∈ ran (,))
139sselda 3915 . . . . . . . . . 10 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥 ∈ ℝ)
14 1re 10630 . . . . . . . . . . . 12 1 ∈ ℝ
151bl2ioo 23397 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑥(ball‘𝐷)1) = ((𝑥 − 1)(,)(𝑥 + 1)))
1614, 15mpan2 690 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥(ball‘𝐷)1) = ((𝑥 − 1)(,)(𝑥 + 1)))
17 ioof 12825 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
18 ffn 6487 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
1917, 18ax-mp 5 . . . . . . . . . . . 12 (,) Fn (ℝ* × ℝ*)
20 peano2rem 10942 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
2120rexrd 10680 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ*)
22 peano2re 10802 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
2322rexrd 10680 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
24 fnovrn 7303 . . . . . . . . . . . 12 (((,) Fn (ℝ* × ℝ*) ∧ (𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*) → ((𝑥 − 1)(,)(𝑥 + 1)) ∈ ran (,))
2519, 21, 23, 24mp3an2i 1463 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 − 1)(,)(𝑥 + 1)) ∈ ran (,))
2616, 25eqeltrd 2890 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥(ball‘𝐷)1) ∈ ran (,))
2713, 26syl 17 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → (𝑥(ball‘𝐷)1) ∈ ran (,))
28 simpr 488 . . . . . . . . . 10 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥𝑣)
29 1rp 12381 . . . . . . . . . . . 12 1 ∈ ℝ+
30 blcntr 23020 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑥 ∈ ℝ ∧ 1 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
312, 29, 30mp3an13 1449 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ (𝑥(ball‘𝐷)1))
3213, 31syl 17 . . . . . . . . . 10 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
3328, 32elind 4121 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑣 ∩ (𝑥(ball‘𝐷)1)))
34 basis2 21556 . . . . . . . . 9 (((ran (,) ∈ TopBases ∧ 𝑣 ∈ ran (,)) ∧ ((𝑥(ball‘𝐷)1) ∈ ran (,) ∧ 𝑥 ∈ (𝑣 ∩ (𝑥(ball‘𝐷)1)))) → ∃𝑧 ∈ ran (,)(𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))))
3511, 12, 27, 33, 34syl22anc 837 . . . . . . . 8 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → ∃𝑧 ∈ ran (,)(𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))))
36 ovelrn 7304 . . . . . . . . . . 11 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)))
3719, 36ax-mp 5 . . . . . . . . . 10 (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))
38 eleq2 2878 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎(,)𝑏) → (𝑥𝑧𝑥 ∈ (𝑎(,)𝑏)))
39 sseq1 3940 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎(,)𝑏) → (𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ↔ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))))
4038, 39anbi12d 633 . . . . . . . . . . . . . 14 (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) ↔ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)))))
41 inss2 4156 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ (𝑥(ball‘𝐷)1)
42 sstr 3923 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ∧ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ (𝑥(ball‘𝐷)1)) → (𝑎(,)𝑏) ⊆ (𝑥(ball‘𝐷)1))
4341, 42mpan2 690 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) → (𝑎(,)𝑏) ⊆ (𝑥(ball‘𝐷)1))
4443adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ⊆ (𝑥(ball‘𝐷)1))
45 elioore 12756 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑎(,)𝑏) → 𝑥 ∈ ℝ)
4645adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑥 ∈ ℝ)
4746, 16syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥(ball‘𝐷)1) = ((𝑥 − 1)(,)(𝑥 + 1)))
4844, 47sseqtrd 3955 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ⊆ ((𝑥 − 1)(,)(𝑥 + 1)))
49 dfss 3899 . . . . . . . . . . . . . . . . . . 19 ((𝑎(,)𝑏) ⊆ ((𝑥 − 1)(,)(𝑥 + 1)) ↔ (𝑎(,)𝑏) = ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))))
5048, 49sylib 221 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) = ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))))
51 eliooxr 12783 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
5221, 23jca 515 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ → ((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*))
5345, 52syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*))
54 iooin 12760 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ ((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))) = (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
5551, 53, 54syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))) = (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
5655adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))) = (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
5750, 56eqtrd 2833 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) = (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
58 mnfxr 10687 . . . . . . . . . . . . . . . . . . . 20 -∞ ∈ ℝ*
5958a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ ∈ ℝ*)
6046, 21syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 − 1) ∈ ℝ*)
6151adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
6261simpld 498 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑎 ∈ ℝ*)
6360, 62ifcld 4470 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ*)
6461simprd 499 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑏 ∈ ℝ*)
6546, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 + 1) ∈ ℝ)
6665rexrd 10680 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 + 1) ∈ ℝ*)
6764, 66ifcld 4470 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*)
6845, 20syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑎(,)𝑏) → (𝑥 − 1) ∈ ℝ)
6968adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 − 1) ∈ ℝ)
7069mnfltd 12507 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ < (𝑥 − 1))
71 xrmax2 12557 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ* ∧ (𝑥 − 1) ∈ ℝ*) → (𝑥 − 1) ≤ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
7262, 60, 71syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 − 1) ≤ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
7359, 60, 63, 70, 72xrltletrd 12542 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ < if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
74 simpl 486 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑥 ∈ (𝑎(,)𝑏))
7574, 57eleqtrd 2892 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
76 eliooxr 12783 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) → (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*))
77 ne0i 4250 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) → (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) ≠ ∅)
78 ioon0 12752 . . . . . . . . . . . . . . . . . . . . . 22 ((if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*) → ((if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) ≠ ∅ ↔ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
7977, 78syl5ib 247 . . . . . . . . . . . . . . . . . . . . 21 ((if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*) → (𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
8076, 79mpcom 38 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)))
8175, 80syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)))
82 xrre2 12551 . . . . . . . . . . . . . . . . . . 19 (((-∞ ∈ ℝ* ∧ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*) ∧ (-∞ < if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∧ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ)
8359, 63, 67, 73, 81, 82syl32anc 1375 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ)
84 mnfle 12517 . . . . . . . . . . . . . . . . . . . . 21 (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* → -∞ ≤ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
8563, 84syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ ≤ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
8659, 63, 67, 85, 81xrlelttrd 12541 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)))
87 xrmin2 12559 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ≤ (𝑥 + 1))
8864, 66, 87syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ≤ (𝑥 + 1))
89 xrre 12550 . . . . . . . . . . . . . . . . . . 19 (((if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ) ∧ (-∞ < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ≤ (𝑥 + 1))) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ)
9067, 65, 86, 88, 89syl22anc 837 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ)
911ioo2blex 23399 . . . . . . . . . . . . . . . . . 18 ((if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ) → (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) ∈ ran (ball‘𝐷))
9283, 90, 91syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) ∈ ran (ball‘𝐷))
9357, 92eqeltrd 2890 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ∈ ran (ball‘𝐷))
94 inss1 4155 . . . . . . . . . . . . . . . . . 18 (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ 𝑣
95 sstr 3923 . . . . . . . . . . . . . . . . . 18 (((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ∧ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ 𝑣) → (𝑎(,)𝑏) ⊆ 𝑣)
9694, 95mpan2 690 . . . . . . . . . . . . . . . . 17 ((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) → (𝑎(,)𝑏) ⊆ 𝑣)
9796adantl 485 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ⊆ 𝑣)
98 sseq1 3940 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑎(,)𝑏) → (𝑧𝑣 ↔ (𝑎(,)𝑏) ⊆ 𝑣))
9938, 98anbi12d 633 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧𝑣) ↔ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
10099rspcev 3571 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∈ ran (ball‘𝐷) ∧ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)) → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣))
10193, 74, 97, 100syl12anc 835 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣))
102 blssex 23034 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
1032, 46, 102sylancr 590 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
104101, 103mpbid 235 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
10540, 104syl6bi 256 . . . . . . . . . . . . 13 (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
106105a1i 11 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)))
107106rexlimivv 3251 . . . . . . . . . . 11 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
108107imp 410 . . . . . . . . . 10 ((∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) ∧ (𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
10937, 108sylanb 584 . . . . . . . . 9 ((𝑧 ∈ ran (,) ∧ (𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
110109rexlimiva 3240 . . . . . . . 8 (∃𝑧 ∈ ran (,)(𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
11135, 110syl 17 . . . . . . 7 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
112111ralrimiva 3149 . . . . . 6 (𝑣 ∈ ran (,) → ∀𝑥𝑣𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
1133elmopn2 23052 . . . . . . 7 (𝐷 ∈ (∞Met‘ℝ) → (𝑣𝐽 ↔ (𝑣 ⊆ ℝ ∧ ∀𝑥𝑣𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)))
1142, 113ax-mp 5 . . . . . 6 (𝑣𝐽 ↔ (𝑣 ⊆ ℝ ∧ ∀𝑥𝑣𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
1159, 112, 114sylanbrc 586 . . . . 5 (𝑣 ∈ ran (,) → 𝑣𝐽)
116115ssriv 3919 . . . 4 ran (,) ⊆ 𝐽
117116, 5sseqtri 3951 . . 3 ran (,) ⊆ (topGen‘ran (ball‘𝐷))
118 2basgen 21595 . . 3 ((ran (ball‘𝐷) ⊆ ran (,) ∧ ran (,) ⊆ (topGen‘ran (ball‘𝐷))) → (topGen‘ran (ball‘𝐷)) = (topGen‘ran (,)))
1196, 117, 118mp2an 691 . 2 (topGen‘ran (ball‘𝐷)) = (topGen‘ran (,))
1205, 119eqtr2i 2822 1 (topGen‘ran (,)) = 𝐽
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cin 3880  wss 3881  c0 4243  ifcif 4425  𝒫 cpw 4497   cuni 4800   class class class wbr 5030   × cxp 5517  ran crn 5520  cres 5521  ccom 5523   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  1c1 10527   + caddc 10529  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  cmin 10859  +crp 12377  (,)cioo 12726  abscabs 14585  topGenctg 16703  ∞Metcxmet 20076  ballcbl 20078  MetOpencmopn 20081  TopBasesctb 21550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-bases 21551
This theorem is referenced by:  qdensere2  23402  rehaus  23404  resubmet  23407  tgioo2  23408  xrsmopn  23417  iccntr  23426  icccmplem3  23429  reconnlem2  23432  opnreen  23436  metdscn2  23462  evthicc  24063  opnmbllem  24205  dvlip2  24598  lhop  24619  dvcnvre  24622  nmcvcn  28478  opnrebl  33781  opnrebl2  33782  ptrecube  35057  poimirlem30  35087  opnmbllem0  35093  reheibor  35277
  Copyright terms: Public domain W3C validator