MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgioo Structured version   Visualization version   GIF version

Theorem tgioo 24831
Description: The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
tgioo.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tgioo (topGen‘ran (,)) = 𝐽

Proof of Theorem tgioo
Dummy variables 𝑥 𝑦 𝑧 𝑎 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . 4 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 24826 . . 3 𝐷 ∈ (∞Met‘ℝ)
3 tgioo.2 . . . 4 𝐽 = (MetOpen‘𝐷)
43mopnval 24463 . . 3 (𝐷 ∈ (∞Met‘ℝ) → 𝐽 = (topGen‘ran (ball‘𝐷)))
52, 4ax-mp 5 . 2 𝐽 = (topGen‘ran (ball‘𝐷))
61blssioo 24830 . . 3 ran (ball‘𝐷) ⊆ ran (,)
7 elssuni 4941 . . . . . . 7 (𝑣 ∈ ran (,) → 𝑣 ran (,))
8 unirnioo 13485 . . . . . . 7 ℝ = ran (,)
97, 8sseqtrrdi 4046 . . . . . 6 (𝑣 ∈ ran (,) → 𝑣 ⊆ ℝ)
10 retopbas 24796 . . . . . . . . . 10 ran (,) ∈ TopBases
1110a1i 11 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → ran (,) ∈ TopBases)
12 simpl 482 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑣 ∈ ran (,))
139sselda 3994 . . . . . . . . . 10 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥 ∈ ℝ)
14 1re 11258 . . . . . . . . . . . 12 1 ∈ ℝ
151bl2ioo 24827 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑥(ball‘𝐷)1) = ((𝑥 − 1)(,)(𝑥 + 1)))
1614, 15mpan2 691 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥(ball‘𝐷)1) = ((𝑥 − 1)(,)(𝑥 + 1)))
17 ioof 13483 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
18 ffn 6736 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
1917, 18ax-mp 5 . . . . . . . . . . . 12 (,) Fn (ℝ* × ℝ*)
20 peano2rem 11573 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
2120rexrd 11308 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ*)
22 peano2re 11431 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
2322rexrd 11308 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
24 fnovrn 7607 . . . . . . . . . . . 12 (((,) Fn (ℝ* × ℝ*) ∧ (𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*) → ((𝑥 − 1)(,)(𝑥 + 1)) ∈ ran (,))
2519, 21, 23, 24mp3an2i 1465 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 − 1)(,)(𝑥 + 1)) ∈ ran (,))
2616, 25eqeltrd 2838 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥(ball‘𝐷)1) ∈ ran (,))
2713, 26syl 17 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → (𝑥(ball‘𝐷)1) ∈ ran (,))
28 simpr 484 . . . . . . . . . 10 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥𝑣)
29 1rp 13035 . . . . . . . . . . . 12 1 ∈ ℝ+
30 blcntr 24438 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑥 ∈ ℝ ∧ 1 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
312, 29, 30mp3an13 1451 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ (𝑥(ball‘𝐷)1))
3213, 31syl 17 . . . . . . . . . 10 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
3328, 32elind 4209 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑣 ∩ (𝑥(ball‘𝐷)1)))
34 basis2 22973 . . . . . . . . 9 (((ran (,) ∈ TopBases ∧ 𝑣 ∈ ran (,)) ∧ ((𝑥(ball‘𝐷)1) ∈ ran (,) ∧ 𝑥 ∈ (𝑣 ∩ (𝑥(ball‘𝐷)1)))) → ∃𝑧 ∈ ran (,)(𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))))
3511, 12, 27, 33, 34syl22anc 839 . . . . . . . 8 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → ∃𝑧 ∈ ran (,)(𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))))
36 ovelrn 7608 . . . . . . . . . . 11 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)))
3719, 36ax-mp 5 . . . . . . . . . 10 (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))
38 eleq2 2827 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎(,)𝑏) → (𝑥𝑧𝑥 ∈ (𝑎(,)𝑏)))
39 sseq1 4020 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎(,)𝑏) → (𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ↔ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))))
4038, 39anbi12d 632 . . . . . . . . . . . . . 14 (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) ↔ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)))))
41 inss2 4245 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ (𝑥(ball‘𝐷)1)
42 sstr 4003 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ∧ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ (𝑥(ball‘𝐷)1)) → (𝑎(,)𝑏) ⊆ (𝑥(ball‘𝐷)1))
4341, 42mpan2 691 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) → (𝑎(,)𝑏) ⊆ (𝑥(ball‘𝐷)1))
4443adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ⊆ (𝑥(ball‘𝐷)1))
45 elioore 13413 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑎(,)𝑏) → 𝑥 ∈ ℝ)
4645adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑥 ∈ ℝ)
4746, 16syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥(ball‘𝐷)1) = ((𝑥 − 1)(,)(𝑥 + 1)))
4844, 47sseqtrd 4035 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ⊆ ((𝑥 − 1)(,)(𝑥 + 1)))
49 dfss 3981 . . . . . . . . . . . . . . . . . . 19 ((𝑎(,)𝑏) ⊆ ((𝑥 − 1)(,)(𝑥 + 1)) ↔ (𝑎(,)𝑏) = ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))))
5048, 49sylib 218 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) = ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))))
51 eliooxr 13441 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
5221, 23jca 511 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ → ((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*))
5345, 52syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*))
54 iooin 13417 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ ((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))) = (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
5551, 53, 54syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))) = (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
5655adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))) = (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
5750, 56eqtrd 2774 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) = (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
58 mnfxr 11315 . . . . . . . . . . . . . . . . . . . 20 -∞ ∈ ℝ*
5958a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ ∈ ℝ*)
6046, 21syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 − 1) ∈ ℝ*)
6151adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
6261simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑎 ∈ ℝ*)
6360, 62ifcld 4576 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ*)
6461simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑏 ∈ ℝ*)
6546, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 + 1) ∈ ℝ)
6665rexrd 11308 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 + 1) ∈ ℝ*)
6764, 66ifcld 4576 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*)
6845, 20syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑎(,)𝑏) → (𝑥 − 1) ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 − 1) ∈ ℝ)
7069mnfltd 13163 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ < (𝑥 − 1))
71 xrmax2 13214 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ* ∧ (𝑥 − 1) ∈ ℝ*) → (𝑥 − 1) ≤ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
7262, 60, 71syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 − 1) ≤ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
7359, 60, 63, 70, 72xrltletrd 13199 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ < if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
74 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑥 ∈ (𝑎(,)𝑏))
7574, 57eleqtrd 2840 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
76 eliooxr 13441 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) → (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*))
77 ne0i 4346 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) → (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) ≠ ∅)
78 ioon0 13409 . . . . . . . . . . . . . . . . . . . . . 22 ((if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*) → ((if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) ≠ ∅ ↔ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
7977, 78imbitrid 244 . . . . . . . . . . . . . . . . . . . . 21 ((if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*) → (𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
8076, 79mpcom 38 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)))
8175, 80syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)))
82 xrre2 13208 . . . . . . . . . . . . . . . . . . 19 (((-∞ ∈ ℝ* ∧ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*) ∧ (-∞ < if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∧ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ)
8359, 63, 67, 73, 81, 82syl32anc 1377 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ)
84 mnfle 13173 . . . . . . . . . . . . . . . . . . . . 21 (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* → -∞ ≤ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
8563, 84syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ ≤ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
8659, 63, 67, 85, 81xrlelttrd 13198 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)))
87 xrmin2 13216 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ≤ (𝑥 + 1))
8864, 66, 87syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ≤ (𝑥 + 1))
89 xrre 13207 . . . . . . . . . . . . . . . . . . 19 (((if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ) ∧ (-∞ < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ≤ (𝑥 + 1))) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ)
9067, 65, 86, 88, 89syl22anc 839 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ)
911ioo2blex 24829 . . . . . . . . . . . . . . . . . 18 ((if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ) → (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) ∈ ran (ball‘𝐷))
9283, 90, 91syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) ∈ ran (ball‘𝐷))
9357, 92eqeltrd 2838 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ∈ ran (ball‘𝐷))
94 inss1 4244 . . . . . . . . . . . . . . . . . 18 (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ 𝑣
95 sstr 4003 . . . . . . . . . . . . . . . . . 18 (((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ∧ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ 𝑣) → (𝑎(,)𝑏) ⊆ 𝑣)
9694, 95mpan2 691 . . . . . . . . . . . . . . . . 17 ((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) → (𝑎(,)𝑏) ⊆ 𝑣)
9796adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ⊆ 𝑣)
98 sseq1 4020 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑎(,)𝑏) → (𝑧𝑣 ↔ (𝑎(,)𝑏) ⊆ 𝑣))
9938, 98anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧𝑣) ↔ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
10099rspcev 3621 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∈ ran (ball‘𝐷) ∧ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)) → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣))
10193, 74, 97, 100syl12anc 837 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣))
102 blssex 24452 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
1032, 46, 102sylancr 587 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
104101, 103mpbid 232 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
10540, 104biimtrdi 253 . . . . . . . . . . . . 13 (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
106105a1i 11 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)))
107106rexlimivv 3198 . . . . . . . . . . 11 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
108107imp 406 . . . . . . . . . 10 ((∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) ∧ (𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
10937, 108sylanb 581 . . . . . . . . 9 ((𝑧 ∈ ran (,) ∧ (𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
110109rexlimiva 3144 . . . . . . . 8 (∃𝑧 ∈ ran (,)(𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
11135, 110syl 17 . . . . . . 7 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
112111ralrimiva 3143 . . . . . 6 (𝑣 ∈ ran (,) → ∀𝑥𝑣𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
1133elmopn2 24470 . . . . . . 7 (𝐷 ∈ (∞Met‘ℝ) → (𝑣𝐽 ↔ (𝑣 ⊆ ℝ ∧ ∀𝑥𝑣𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)))
1142, 113ax-mp 5 . . . . . 6 (𝑣𝐽 ↔ (𝑣 ⊆ ℝ ∧ ∀𝑥𝑣𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
1159, 112, 114sylanbrc 583 . . . . 5 (𝑣 ∈ ran (,) → 𝑣𝐽)
116115ssriv 3998 . . . 4 ran (,) ⊆ 𝐽
117116, 5sseqtri 4031 . . 3 ran (,) ⊆ (topGen‘ran (ball‘𝐷))
118 2basgen 23012 . . 3 ((ran (ball‘𝐷) ⊆ ran (,) ∧ ran (,) ⊆ (topGen‘ran (ball‘𝐷))) → (topGen‘ran (ball‘𝐷)) = (topGen‘ran (,)))
1196, 117, 118mp2an 692 . 2 (topGen‘ran (ball‘𝐷)) = (topGen‘ran (,))
1205, 119eqtr2i 2763 1 (topGen‘ran (,)) = 𝐽
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  cin 3961  wss 3962  c0 4338  ifcif 4530  𝒫 cpw 4604   cuni 4911   class class class wbr 5147   × cxp 5686  ran crn 5689  cres 5690  ccom 5692   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  cr 11151  1c1 11153   + caddc 11155  -∞cmnf 11290  *cxr 11291   < clt 11292  cle 11293  cmin 11489  +crp 13031  (,)cioo 13383  abscabs 15269  topGenctg 17483  ∞Metcxmet 21366  ballcbl 21368  MetOpencmopn 21371  TopBasesctb 22967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-bases 22968
This theorem is referenced by:  qdensere2  24832  rehaus  24834  resubmet  24837  tgioo2  24838  xrsmopn  24847  iccntr  24856  icccmplem3  24859  reconnlem2  24862  opnreen  24866  metdscn2  24892  evthicc  25507  opnmbllem  25649  dvlip2  26048  lhop  26069  dvcnvre  26072  nmcvcn  30723  opnrebl  36302  opnrebl2  36303  ptrecube  37606  poimirlem30  37636  opnmbllem0  37642  reheibor  37825
  Copyright terms: Public domain W3C validator