MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgioo Structured version   Visualization version   GIF version

Theorem tgioo 24735
Description: The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
tgioo.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tgioo (topGen‘ran (,)) = 𝐽

Proof of Theorem tgioo
Dummy variables 𝑥 𝑦 𝑧 𝑎 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . 4 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 24730 . . 3 𝐷 ∈ (∞Met‘ℝ)
3 tgioo.2 . . . 4 𝐽 = (MetOpen‘𝐷)
43mopnval 24377 . . 3 (𝐷 ∈ (∞Met‘ℝ) → 𝐽 = (topGen‘ran (ball‘𝐷)))
52, 4ax-mp 5 . 2 𝐽 = (topGen‘ran (ball‘𝐷))
61blssioo 24734 . . 3 ran (ball‘𝐷) ⊆ ran (,)
7 elssuni 4913 . . . . . . 7 (𝑣 ∈ ran (,) → 𝑣 ran (,))
8 unirnioo 13466 . . . . . . 7 ℝ = ran (,)
97, 8sseqtrrdi 4000 . . . . . 6 (𝑣 ∈ ran (,) → 𝑣 ⊆ ℝ)
10 retopbas 24699 . . . . . . . . . 10 ran (,) ∈ TopBases
1110a1i 11 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → ran (,) ∈ TopBases)
12 simpl 482 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑣 ∈ ran (,))
139sselda 3958 . . . . . . . . . 10 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥 ∈ ℝ)
14 1re 11235 . . . . . . . . . . . 12 1 ∈ ℝ
151bl2ioo 24731 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑥(ball‘𝐷)1) = ((𝑥 − 1)(,)(𝑥 + 1)))
1614, 15mpan2 691 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥(ball‘𝐷)1) = ((𝑥 − 1)(,)(𝑥 + 1)))
17 ioof 13464 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
18 ffn 6706 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
1917, 18ax-mp 5 . . . . . . . . . . . 12 (,) Fn (ℝ* × ℝ*)
20 peano2rem 11550 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
2120rexrd 11285 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ*)
22 peano2re 11408 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
2322rexrd 11285 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
24 fnovrn 7582 . . . . . . . . . . . 12 (((,) Fn (ℝ* × ℝ*) ∧ (𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*) → ((𝑥 − 1)(,)(𝑥 + 1)) ∈ ran (,))
2519, 21, 23, 24mp3an2i 1468 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 − 1)(,)(𝑥 + 1)) ∈ ran (,))
2616, 25eqeltrd 2834 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥(ball‘𝐷)1) ∈ ran (,))
2713, 26syl 17 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → (𝑥(ball‘𝐷)1) ∈ ran (,))
28 simpr 484 . . . . . . . . . 10 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥𝑣)
29 1rp 13012 . . . . . . . . . . . 12 1 ∈ ℝ+
30 blcntr 24352 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑥 ∈ ℝ ∧ 1 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
312, 29, 30mp3an13 1454 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ (𝑥(ball‘𝐷)1))
3213, 31syl 17 . . . . . . . . . 10 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
3328, 32elind 4175 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑣 ∩ (𝑥(ball‘𝐷)1)))
34 basis2 22889 . . . . . . . . 9 (((ran (,) ∈ TopBases ∧ 𝑣 ∈ ran (,)) ∧ ((𝑥(ball‘𝐷)1) ∈ ran (,) ∧ 𝑥 ∈ (𝑣 ∩ (𝑥(ball‘𝐷)1)))) → ∃𝑧 ∈ ran (,)(𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))))
3511, 12, 27, 33, 34syl22anc 838 . . . . . . . 8 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → ∃𝑧 ∈ ran (,)(𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))))
36 ovelrn 7583 . . . . . . . . . . 11 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)))
3719, 36ax-mp 5 . . . . . . . . . 10 (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))
38 eleq2 2823 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎(,)𝑏) → (𝑥𝑧𝑥 ∈ (𝑎(,)𝑏)))
39 sseq1 3984 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎(,)𝑏) → (𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ↔ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))))
4038, 39anbi12d 632 . . . . . . . . . . . . . 14 (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) ↔ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)))))
41 inss2 4213 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ (𝑥(ball‘𝐷)1)
42 sstr 3967 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ∧ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ (𝑥(ball‘𝐷)1)) → (𝑎(,)𝑏) ⊆ (𝑥(ball‘𝐷)1))
4341, 42mpan2 691 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) → (𝑎(,)𝑏) ⊆ (𝑥(ball‘𝐷)1))
4443adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ⊆ (𝑥(ball‘𝐷)1))
45 elioore 13392 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑎(,)𝑏) → 𝑥 ∈ ℝ)
4645adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑥 ∈ ℝ)
4746, 16syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥(ball‘𝐷)1) = ((𝑥 − 1)(,)(𝑥 + 1)))
4844, 47sseqtrd 3995 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ⊆ ((𝑥 − 1)(,)(𝑥 + 1)))
49 dfss 3945 . . . . . . . . . . . . . . . . . . 19 ((𝑎(,)𝑏) ⊆ ((𝑥 − 1)(,)(𝑥 + 1)) ↔ (𝑎(,)𝑏) = ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))))
5048, 49sylib 218 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) = ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))))
51 eliooxr 13421 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
5221, 23jca 511 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ → ((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*))
5345, 52syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*))
54 iooin 13396 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ ((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))) = (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
5551, 53, 54syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))) = (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
5655adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))) = (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
5750, 56eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) = (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
58 mnfxr 11292 . . . . . . . . . . . . . . . . . . . 20 -∞ ∈ ℝ*
5958a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ ∈ ℝ*)
6046, 21syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 − 1) ∈ ℝ*)
6151adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
6261simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑎 ∈ ℝ*)
6360, 62ifcld 4547 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ*)
6461simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑏 ∈ ℝ*)
6546, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 + 1) ∈ ℝ)
6665rexrd 11285 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 + 1) ∈ ℝ*)
6764, 66ifcld 4547 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*)
6845, 20syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑎(,)𝑏) → (𝑥 − 1) ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 − 1) ∈ ℝ)
7069mnfltd 13140 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ < (𝑥 − 1))
71 xrmax2 13192 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ* ∧ (𝑥 − 1) ∈ ℝ*) → (𝑥 − 1) ≤ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
7262, 60, 71syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 − 1) ≤ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
7359, 60, 63, 70, 72xrltletrd 13177 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ < if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
74 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑥 ∈ (𝑎(,)𝑏))
7574, 57eleqtrd 2836 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
76 eliooxr 13421 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) → (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*))
77 ne0i 4316 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) → (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) ≠ ∅)
78 ioon0 13388 . . . . . . . . . . . . . . . . . . . . . 22 ((if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*) → ((if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) ≠ ∅ ↔ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
7977, 78imbitrid 244 . . . . . . . . . . . . . . . . . . . . 21 ((if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*) → (𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))))
8076, 79mpcom 38 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)))
8175, 80syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)))
82 xrre2 13186 . . . . . . . . . . . . . . . . . . 19 (((-∞ ∈ ℝ* ∧ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ*) ∧ (-∞ < if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∧ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ)
8359, 63, 67, 73, 81, 82syl32anc 1380 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ)
84 mnfle 13151 . . . . . . . . . . . . . . . . . . . . 21 (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ* → -∞ ≤ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
8563, 84syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ ≤ if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎))
8659, 63, 67, 85, 81xrlelttrd 13176 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)))
87 xrmin2 13194 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ≤ (𝑥 + 1))
8864, 66, 87syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ≤ (𝑥 + 1))
89 xrre 13185 . . . . . . . . . . . . . . . . . . 19 (((if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ) ∧ (-∞ < if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ≤ (𝑥 + 1))) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ)
9067, 65, 86, 88, 89syl22anc 838 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ)
911ioo2blex 24733 . . . . . . . . . . . . . . . . . 18 ((if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎) ∈ ℝ ∧ if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1)) ∈ ℝ) → (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) ∈ ran (ball‘𝐷))
9283, 90, 91syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (if(𝑎 ≤ (𝑥 − 1), (𝑥 − 1), 𝑎)(,)if(𝑏 ≤ (𝑥 + 1), 𝑏, (𝑥 + 1))) ∈ ran (ball‘𝐷))
9357, 92eqeltrd 2834 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ∈ ran (ball‘𝐷))
94 inss1 4212 . . . . . . . . . . . . . . . . . 18 (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ 𝑣
95 sstr 3967 . . . . . . . . . . . . . . . . . 18 (((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ∧ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ 𝑣) → (𝑎(,)𝑏) ⊆ 𝑣)
9694, 95mpan2 691 . . . . . . . . . . . . . . . . 17 ((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) → (𝑎(,)𝑏) ⊆ 𝑣)
9796adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ⊆ 𝑣)
98 sseq1 3984 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑎(,)𝑏) → (𝑧𝑣 ↔ (𝑎(,)𝑏) ⊆ 𝑣))
9938, 98anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧𝑣) ↔ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
10099rspcev 3601 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∈ ran (ball‘𝐷) ∧ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)) → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣))
10193, 74, 97, 100syl12anc 836 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣))
102 blssex 24366 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
1032, 46, 102sylancr 587 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
104101, 103mpbid 232 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
10540, 104biimtrdi 253 . . . . . . . . . . . . 13 (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
106105a1i 11 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)))
107106rexlimivv 3186 . . . . . . . . . . 11 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
108107imp 406 . . . . . . . . . 10 ((∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) ∧ (𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
10937, 108sylanb 581 . . . . . . . . 9 ((𝑧 ∈ ran (,) ∧ (𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
110109rexlimiva 3133 . . . . . . . 8 (∃𝑧 ∈ ran (,)(𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
11135, 110syl 17 . . . . . . 7 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
112111ralrimiva 3132 . . . . . 6 (𝑣 ∈ ran (,) → ∀𝑥𝑣𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
1133elmopn2 24384 . . . . . . 7 (𝐷 ∈ (∞Met‘ℝ) → (𝑣𝐽 ↔ (𝑣 ⊆ ℝ ∧ ∀𝑥𝑣𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)))
1142, 113ax-mp 5 . . . . . 6 (𝑣𝐽 ↔ (𝑣 ⊆ ℝ ∧ ∀𝑥𝑣𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
1159, 112, 114sylanbrc 583 . . . . 5 (𝑣 ∈ ran (,) → 𝑣𝐽)
116115ssriv 3962 . . . 4 ran (,) ⊆ 𝐽
117116, 5sseqtri 4007 . . 3 ran (,) ⊆ (topGen‘ran (ball‘𝐷))
118 2basgen 22928 . . 3 ((ran (ball‘𝐷) ⊆ ran (,) ∧ ran (,) ⊆ (topGen‘ran (ball‘𝐷))) → (topGen‘ran (ball‘𝐷)) = (topGen‘ran (,)))
1196, 117, 118mp2an 692 . 2 (topGen‘ran (ball‘𝐷)) = (topGen‘ran (,))
1205, 119eqtr2i 2759 1 (topGen‘ran (,)) = 𝐽
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cin 3925  wss 3926  c0 4308  ifcif 4500  𝒫 cpw 4575   cuni 4883   class class class wbr 5119   × cxp 5652  ran crn 5655  cres 5656  ccom 5658   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  cr 11128  1c1 11130   + caddc 11132  -∞cmnf 11267  *cxr 11268   < clt 11269  cle 11270  cmin 11466  +crp 13008  (,)cioo 13362  abscabs 15253  topGenctg 17451  ∞Metcxmet 21300  ballcbl 21302  MetOpencmopn 21305  TopBasesctb 22883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-bases 22884
This theorem is referenced by:  qdensere2  24736  rehaus  24738  resubmet  24741  tgioo2  24742  xrsmopn  24752  iccntr  24761  icccmplem3  24764  reconnlem2  24767  opnreen  24771  metdscn2  24797  evthicc  25412  opnmbllem  25554  dvlip2  25952  lhop  25973  dvcnvre  25976  nmcvcn  30676  opnrebl  36338  opnrebl2  36339  ptrecube  37644  poimirlem30  37674  opnmbllem0  37680  reheibor  37863
  Copyright terms: Public domain W3C validator