Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpima2sn Structured version   Visualization version   GIF version

Theorem bj-xpima2sn 37013
Description: The image of a singleton by a direct product, nonempty case. [To replace xpimasn 6140.] (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-xpima2sn (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)

Proof of Theorem bj-xpima2sn
StepHypRef Expression
1 bj-xpimasn 37010 . 2 ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋𝐴, 𝐵, ∅)
2 iftrue 4482 . 2 (𝑋𝐴 → if(𝑋𝐴, 𝐵, ∅) = 𝐵)
31, 2eqtrid 2780 1 (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  c0 4284  ifcif 4476  {csn 4577   × cxp 5619  cima 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634
This theorem is referenced by:  bj-projval  37051
  Copyright terms: Public domain W3C validator