![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpima2sn | Structured version Visualization version GIF version |
Description: The image of a singleton by a direct product, nonempty case. [To replace xpimasn 6183.] (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-xpima2sn | ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-xpimasn 36357 | . 2 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) | |
2 | iftrue 4530 | . 2 ⊢ (𝑋 ∈ 𝐴 → if(𝑋 ∈ 𝐴, 𝐵, ∅) = 𝐵) | |
3 | 1, 2 | eqtrid 2779 | 1 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∅c0 4318 ifcif 4524 {csn 4624 × cxp 5670 “ cima 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 |
This theorem is referenced by: bj-projval 36398 |
Copyright terms: Public domain | W3C validator |