![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpima1 | Structured version Visualization version GIF version |
Description: The image by a Cartesian product. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
Ref | Expression |
---|---|
xpima1 | ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpima 5830 | . 2 ⊢ ((𝐴 × 𝐵) “ 𝐶) = if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) | |
2 | iftrue 4312 | . 2 ⊢ ((𝐴 ∩ 𝐶) = ∅ → if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) = ∅) | |
3 | 1, 2 | syl5eq 2825 | 1 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∩ cin 3790 ∅c0 4140 ifcif 4306 × cxp 5353 “ cima 5358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4887 df-opab 4949 df-xp 5361 df-rel 5362 df-cnv 5363 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 |
This theorem is referenced by: bj-xpima1snALT 33516 arearect 38741 |
Copyright terms: Public domain | W3C validator |