MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpima1 Structured version   Visualization version   GIF version

Theorem xpima1 6108
Description: Direct image by a Cartesian product (case of empty intersection with the domain). (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima1 ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅)

Proof of Theorem xpima1
StepHypRef Expression
1 xpima 6107 . 2 ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)
2 iftrue 4477 . 2 ((𝐴𝐶) = ∅ → if((𝐴𝐶) = ∅, ∅, 𝐵) = ∅)
31, 2eqtrid 2789 1 ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3896  c0 4267  ifcif 4471   × cxp 5605  cima 5610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-br 5088  df-opab 5150  df-xp 5613  df-rel 5614  df-cnv 5615  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620
This theorem is referenced by:  bj-xpima1snALT  35203  arearect  41250
  Copyright terms: Public domain W3C validator