MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeq Structured version   Visualization version   GIF version

Theorem funeq 6565
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 4040 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 funss 6564 . . 3 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵))
4 eqimss 4039 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 funss 6564 . . 3 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴))
73, 6impbid 211 1 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wss 3947  Fun wfun 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3954  df-ss 3964  df-br 5148  df-opab 5210  df-rel 5682  df-cnv 5683  df-co 5684  df-fun 6542
This theorem is referenced by:  funeqi  6566  funeqd  6567  fununi  6620  cnvresid  6624  fneq1  6637  funop  7143  funsndifnop  7145  nvof1o  7274  funcnvuni  7918  fiun  7925  elpmg  8833  fundmeng  9028  isfsupp  9361  dfac9  10127  axdc3lem2  10442  frlmphllem  21326  oldval  27338  usgredgop  28419  locfinreflem  32808  orvcval  33444  bnj1379  33829  bnj1385  33831  bnj1497  34059  funen1cnv  34079  elfunsg  34876  funop1  45977
  Copyright terms: Public domain W3C validator