| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funeq | ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 4006 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 2 | funss 6535 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (Fun 𝐴 → Fun 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵)) |
| 4 | eqimss 4005 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 5 | funss 6535 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| 7 | 3, 6 | impbid 212 | 1 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⊆ wss 3914 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-fun 6513 |
| This theorem is referenced by: funeqi 6537 funeqd 6538 fununi 6591 cnvresid 6595 fneq1 6609 funop 7121 funsndifnop 7123 nvof1o 7255 funcnvuni 7908 fiun 7921 elpmg 8816 fundmeng 9003 isfsupp 9316 dfac9 10090 axdc3lem2 10404 frlmphllem 21689 psdmul 22053 oldval 27762 usgredgop 29097 locfinreflem 33830 orvcval 34449 bnj1379 34820 bnj1385 34822 bnj1497 35050 funen1cnv 35078 elfunsg 35904 modelaxreplem1 44968 modelaxreplem2 44969 modelaxrep 44971 funop1 47284 |
| Copyright terms: Public domain | W3C validator |