| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funeq | ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 4018 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 2 | funss 6555 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (Fun 𝐴 → Fun 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵)) |
| 4 | eqimss 4017 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 5 | funss 6555 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| 7 | 3, 6 | impbid 212 | 1 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⊆ wss 3926 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-br 5120 df-opab 5182 df-rel 5661 df-cnv 5662 df-co 5663 df-fun 6533 |
| This theorem is referenced by: funeqi 6557 funeqd 6558 fununi 6611 cnvresid 6615 fneq1 6629 funop 7139 funsndifnop 7141 nvof1o 7273 funcnvuni 7928 fiun 7941 elpmg 8857 fundmeng 9046 isfsupp 9377 dfac9 10151 axdc3lem2 10465 frlmphllem 21740 psdmul 22104 oldval 27814 usgredgop 29149 locfinreflem 33871 orvcval 34490 bnj1379 34861 bnj1385 34863 bnj1497 35091 funen1cnv 35119 elfunsg 35934 modelaxreplem1 45003 modelaxreplem2 45004 modelaxrep 45006 funop1 47312 |
| Copyright terms: Public domain | W3C validator |