| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funeq | ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 4009 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 2 | funss 6538 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (Fun 𝐴 → Fun 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵)) |
| 4 | eqimss 4008 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 5 | funss 6538 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| 7 | 3, 6 | impbid 212 | 1 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⊆ wss 3917 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-fun 6516 |
| This theorem is referenced by: funeqi 6540 funeqd 6541 fununi 6594 cnvresid 6598 fneq1 6612 funop 7124 funsndifnop 7126 nvof1o 7258 funcnvuni 7911 fiun 7924 elpmg 8819 fundmeng 9006 isfsupp 9323 dfac9 10097 axdc3lem2 10411 frlmphllem 21696 psdmul 22060 oldval 27769 usgredgop 29104 locfinreflem 33837 orvcval 34456 bnj1379 34827 bnj1385 34829 bnj1497 35057 funen1cnv 35085 elfunsg 35911 modelaxreplem1 44975 modelaxreplem2 44976 modelaxrep 44978 funop1 47288 |
| Copyright terms: Public domain | W3C validator |