MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeq Structured version   Visualization version   GIF version

Theorem funeq 6598
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 4068 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 funss 6597 . . 3 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵))
4 eqimss 4067 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 funss 6597 . . 3 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴))
73, 6impbid 212 1 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wss 3976  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ss 3993  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-fun 6575
This theorem is referenced by:  funeqi  6599  funeqd  6600  fununi  6653  cnvresid  6657  fneq1  6670  funop  7183  funsndifnop  7185  nvof1o  7316  funcnvuni  7972  fiun  7983  elpmg  8901  fundmeng  9097  isfsupp  9435  dfac9  10206  axdc3lem2  10520  frlmphllem  21823  psdmul  22193  oldval  27911  usgredgop  29205  locfinreflem  33786  orvcval  34422  bnj1379  34806  bnj1385  34808  bnj1497  35036  funen1cnv  35064  elfunsg  35880  funop1  47198
  Copyright terms: Public domain W3C validator