MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeq Structured version   Visualization version   GIF version

Theorem funeq 6454
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 3978 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 funss 6453 . . 3 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵))
4 eqimss 3977 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 funss 6453 . . 3 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴))
73, 6impbid 211 1 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wss 3887  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-br 5075  df-opab 5137  df-rel 5596  df-cnv 5597  df-co 5598  df-fun 6435
This theorem is referenced by:  funeqi  6455  funeqd  6456  fununi  6509  cnvresid  6513  fneq1  6524  funop  7021  funsndifnop  7023  nvof1o  7152  funcnvuni  7778  fiun  7785  elpmg  8631  fundmeng  8822  isfsupp  9132  dfac9  9892  axdc3lem2  10207  frlmphllem  20987  usgredgop  27540  locfinreflem  31790  orvcval  32424  bnj1379  32810  bnj1385  32812  bnj1497  33040  funen1cnv  33060  oldval  34038  elfunsg  34218  funop1  44775
  Copyright terms: Public domain W3C validator