MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeq Structured version   Visualization version   GIF version

Theorem funeq 6569
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 4042 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 funss 6568 . . 3 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵))
4 eqimss 4041 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 funss 6568 . . 3 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴))
73, 6impbid 211 1 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wss 3949  Fun wfun 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-br 5150  df-opab 5212  df-rel 5684  df-cnv 5685  df-co 5686  df-fun 6546
This theorem is referenced by:  funeqi  6570  funeqd  6571  fununi  6624  cnvresid  6628  fneq1  6641  funop  7147  funsndifnop  7149  nvof1o  7278  funcnvuni  7922  fiun  7929  elpmg  8837  fundmeng  9032  isfsupp  9365  dfac9  10131  axdc3lem2  10446  frlmphllem  21335  oldval  27349  usgredgop  28430  locfinreflem  32820  orvcval  33456  bnj1379  33841  bnj1385  33843  bnj1497  34071  funen1cnv  34091  elfunsg  34888  funop1  45991
  Copyright terms: Public domain W3C validator