| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funeq | ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 3989 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 2 | funss 6500 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (Fun 𝐴 → Fun 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵)) |
| 4 | eqimss 3988 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 5 | funss 6500 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| 7 | 3, 6 | impbid 212 | 1 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⊆ wss 3897 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-fun 6483 |
| This theorem is referenced by: funeqi 6502 funeqd 6503 fununi 6556 cnvresid 6560 fneq1 6572 funop 7082 funsndifnop 7084 nvof1o 7214 funcnvuni 7862 fiun 7875 elpmg 8767 fundmeng 8954 isfsupp 9249 dfac9 10028 axdc3lem2 10342 frlmphllem 21717 psdmul 22081 oldval 27795 usgredgop 29148 locfinreflem 33853 orvcval 34471 bnj1379 34842 bnj1385 34844 bnj1497 35072 funen1cnv 35100 elfunsg 35958 modelaxreplem1 45081 modelaxreplem2 45082 modelaxrep 45084 funop1 47393 |
| Copyright terms: Public domain | W3C validator |