![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funeq | Structured version Visualization version GIF version |
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
funeq | ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 4054 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
2 | funss 6586 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (Fun 𝐴 → Fun 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵)) |
4 | eqimss 4053 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
5 | funss 6586 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
7 | 3, 6 | impbid 212 | 1 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ⊆ wss 3962 Fun wfun 6556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ss 3979 df-br 5148 df-opab 5210 df-rel 5695 df-cnv 5696 df-co 5697 df-fun 6564 |
This theorem is referenced by: funeqi 6588 funeqd 6589 fununi 6642 cnvresid 6646 fneq1 6659 funop 7168 funsndifnop 7170 nvof1o 7299 funcnvuni 7954 fiun 7965 elpmg 8881 fundmeng 9070 isfsupp 9402 dfac9 10174 axdc3lem2 10488 frlmphllem 21817 psdmul 22187 oldval 27907 usgredgop 29201 locfinreflem 33800 orvcval 34438 bnj1379 34822 bnj1385 34824 bnj1497 35052 funen1cnv 35080 elfunsg 35897 modelaxreplem1 44942 modelaxreplem2 44943 modelaxrep 44945 funop1 47232 |
Copyright terms: Public domain | W3C validator |