MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeq Structured version   Visualization version   GIF version

Theorem funeq 6520
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 4003 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 funss 6519 . . 3 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵))
4 eqimss 4002 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 funss 6519 . . 3 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴))
73, 6impbid 212 1 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wss 3911  Fun wfun 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ss 3928  df-br 5103  df-opab 5165  df-rel 5638  df-cnv 5639  df-co 5640  df-fun 6501
This theorem is referenced by:  funeqi  6521  funeqd  6522  fununi  6575  cnvresid  6579  fneq1  6591  funop  7103  funsndifnop  7105  nvof1o  7237  funcnvuni  7888  fiun  7901  elpmg  8793  fundmeng  8980  isfsupp  9292  dfac9  10066  axdc3lem2  10380  frlmphllem  21665  psdmul  22029  oldval  27738  usgredgop  29073  locfinreflem  33803  orvcval  34422  bnj1379  34793  bnj1385  34795  bnj1497  35023  funen1cnv  35051  elfunsg  35877  modelaxreplem1  44941  modelaxreplem2  44942  modelaxrep  44944  funop1  47257
  Copyright terms: Public domain W3C validator