Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funeq | Structured version Visualization version GIF version |
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
funeq | ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3949 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
2 | funss 6354 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (Fun 𝐴 → Fun 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵)) |
4 | eqimss 3948 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
5 | funss 6354 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
7 | 3, 6 | impbid 215 | 1 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ⊆ wss 3858 Fun wfun 6329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 df-br 5033 df-opab 5095 df-rel 5531 df-cnv 5532 df-co 5533 df-fun 6337 |
This theorem is referenced by: funeqi 6356 funeqd 6357 fununi 6410 cnvresid 6414 fneq1 6425 funop 6902 funsndifnop 6904 nvof1o 7029 funcnvuni 7641 fiun 7648 elpmg 8432 fundmeng 8603 isfsupp 8870 dfac9 9596 axdc3lem2 9911 frlmphllem 20545 usgredgop 27062 locfinreflem 31311 orvcval 31943 bnj1379 32330 bnj1385 32332 bnj1497 32560 funen1cnv 32585 oldval 33598 elfunsg 33767 funop1 44207 |
Copyright terms: Public domain | W3C validator |