MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeq Structured version   Visualization version   GIF version

Theorem funeq 6501
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 3989 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 funss 6500 . . 3 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵))
4 eqimss 3988 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 funss 6500 . . 3 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴))
73, 6impbid 212 1 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wss 3897  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ss 3914  df-br 5090  df-opab 5152  df-rel 5621  df-cnv 5622  df-co 5623  df-fun 6483
This theorem is referenced by:  funeqi  6502  funeqd  6503  fununi  6556  cnvresid  6560  fneq1  6572  funop  7082  funsndifnop  7084  nvof1o  7214  funcnvuni  7862  fiun  7875  elpmg  8767  fundmeng  8954  isfsupp  9249  dfac9  10028  axdc3lem2  10342  frlmphllem  21717  psdmul  22081  oldval  27795  usgredgop  29148  locfinreflem  33853  orvcval  34471  bnj1379  34842  bnj1385  34844  bnj1497  35072  funen1cnv  35100  elfunsg  35958  modelaxreplem1  45081  modelaxreplem2  45082  modelaxrep  45084  funop1  47393
  Copyright terms: Public domain W3C validator