Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1493 Structured version   Visualization version   GIF version

Theorem bnj1493 35037
Description: Technical lemma for bnj60 35040. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1493.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1493.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1493.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
Assertion
Ref Expression
bnj1493 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1493
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1493.1 . 2 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj1493.2 . 2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj1493.3 . 2 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 biid 261 . 2 ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
5 eqid 2740 . 2 {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))}
6 biid 261 . 2 ((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ↔ (𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅))
7 biid 261 . 2 (((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ¬ 𝑦𝑅𝑥) ↔ ((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ¬ 𝑦𝑅𝑥))
8 biid 261 . 2 ([𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ [𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
9 eqid 2740 . 2 {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))}
10 eqid 2740 . 2 {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))}
11 eqid 2740 . 2 𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩
12 eqid 2740 . 2 ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩}) = ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩})
13 eqid 2740 . 2 𝑧, (( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩}) ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑧, (( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩}) ↾ pred(𝑧, 𝐴, 𝑅))⟩
14 eqid 2740 . 2 ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14bnj1312 35036 1 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  {crab 3443  [wsbc 3804  cun 3974  wss 3976  c0 4352  {csn 4648  cop 4654   cuni 4931   class class class wbr 5166  dom cdm 5700  cres 5702   Fn wfn 6570  cfv 6575   predc-bnj14 34666   FrSe w-bnj15 34670   trClc-bnj18 34672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-reg 9663  ax-inf2 9712
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-om 7906  df-1o 8524  df-bnj17 34665  df-bnj14 34667  df-bnj13 34669  df-bnj15 34671  df-bnj18 34673  df-bnj19 34675
This theorem is referenced by:  bnj1498  35039
  Copyright terms: Public domain W3C validator