Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1493 Structured version   Visualization version   GIF version

Theorem bnj1493 32441
Description: Technical lemma for bnj60 32444. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1493.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1493.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1493.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
Assertion
Ref Expression
bnj1493 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1493
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1493.1 . 2 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj1493.2 . 2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj1493.3 . 2 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 biid 264 . 2 ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
5 eqid 2798 . 2 {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))}
6 biid 264 . 2 ((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ↔ (𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅))
7 biid 264 . 2 (((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ¬ 𝑦𝑅𝑥) ↔ ((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ¬ 𝑦𝑅𝑥))
8 biid 264 . 2 ([𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ [𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
9 eqid 2798 . 2 {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))}
10 eqid 2798 . 2 {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))}
11 eqid 2798 . 2 𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩
12 eqid 2798 . 2 ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩}) = ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩})
13 eqid 2798 . 2 𝑧, (( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩}) ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑧, (( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩}) ↾ pred(𝑧, 𝐴, 𝑅))⟩
14 eqid 2798 . 2 ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14bnj1312 32440 1 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  {cab 2776  wne 2987  wral 3106  wrex 3107  {crab 3110  [wsbc 3720  cun 3879  wss 3881  c0 4243  {csn 4525  cop 4531   cuni 4800   class class class wbr 5030  dom cdm 5519  cres 5521   Fn wfn 6319  cfv 6324   predc-bnj14 32068   FrSe w-bnj15 32072   trClc-bnj18 32074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-bnj17 32067  df-bnj14 32069  df-bnj13 32071  df-bnj15 32073  df-bnj18 32075  df-bnj19 32077
This theorem is referenced by:  bnj1498  32443
  Copyright terms: Public domain W3C validator