Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1493 Structured version   Visualization version   GIF version

Theorem bnj1493 35049
Description: Technical lemma for bnj60 35052. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1493.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1493.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1493.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
Assertion
Ref Expression
bnj1493 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1493
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1493.1 . 2 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj1493.2 . 2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj1493.3 . 2 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 biid 261 . 2 ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
5 eqid 2729 . 2 {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))}
6 biid 261 . 2 ((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ↔ (𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅))
7 biid 261 . 2 (((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ¬ 𝑦𝑅𝑥) ↔ ((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ¬ 𝑦𝑅𝑥))
8 biid 261 . 2 ([𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ [𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
9 eqid 2729 . 2 {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))}
10 eqid 2729 . 2 {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))}
11 eqid 2729 . 2 𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩
12 eqid 2729 . 2 ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩}) = ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩})
13 eqid 2729 . 2 𝑧, (( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩}) ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑧, (( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩}) ↾ pred(𝑧, 𝐴, 𝑅))⟩
14 eqid 2729 . 2 ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14bnj1312 35048 1 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3405  [wsbc 3753  cun 3912  wss 3914  c0 4296  {csn 4589  cop 4595   cuni 4871   class class class wbr 5107  dom cdm 5638  cres 5640   Fn wfn 6506  cfv 6511   predc-bnj14 34678   FrSe w-bnj15 34682   trClc-bnj18 34684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-bnj17 34677  df-bnj14 34679  df-bnj13 34681  df-bnj15 34683  df-bnj18 34685  df-bnj19 34687
This theorem is referenced by:  bnj1498  35051
  Copyright terms: Public domain W3C validator