Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1493 Structured version   Visualization version   GIF version

Theorem bnj1493 32331
Description: Technical lemma for bnj60 32334. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1493.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1493.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1493.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
Assertion
Ref Expression
bnj1493 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1493
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1493.1 . 2 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj1493.2 . 2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj1493.3 . 2 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 biid 263 . 2 ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
5 eqid 2821 . 2 {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))}
6 biid 263 . 2 ((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ↔ (𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅))
7 biid 263 . 2 (((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ¬ 𝑦𝑅𝑥) ↔ ((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ¬ 𝑦𝑅𝑥))
8 biid 263 . 2 ([𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ [𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
9 eqid 2821 . 2 {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))}
10 eqid 2821 . 2 {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))}
11 eqid 2821 . 2 𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩
12 eqid 2821 . 2 ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩}) = ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩})
13 eqid 2821 . 2 𝑧, (( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩}) ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑧, (( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {⟨𝑥, (𝐺‘⟨𝑥, ( {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))⟩)⟩}) ↾ pred(𝑧, 𝐴, 𝑅))⟩
14 eqid 2821 . 2 ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14bnj1312 32330 1 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  {crab 3142  [wsbc 3772  cun 3934  wss 3936  c0 4291  {csn 4567  cop 4573   cuni 4838   class class class wbr 5066  dom cdm 5555  cres 5557   Fn wfn 6350  cfv 6355   predc-bnj14 31958   FrSe w-bnj15 31962   trClc-bnj18 31964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-reg 9056  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-1o 8102  df-bnj17 31957  df-bnj14 31959  df-bnj13 31961  df-bnj15 31963  df-bnj18 31965  df-bnj19 31967
This theorem is referenced by:  bnj1498  32333
  Copyright terms: Public domain W3C validator