Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextress Structured version   Visualization version   GIF version

Theorem fldextress 33654
Description: Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldextress (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))

Proof of Theorem fldextress
StepHypRef Expression
1 fldextfld1 33650 . . . 4 (𝐸/FldExt𝐹𝐸 ∈ Field)
2 fldextfld2 33651 . . . 4 (𝐸/FldExt𝐹𝐹 ∈ Field)
3 brfldext 33648 . . . 4 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
41, 2, 3syl2anc 584 . . 3 (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
54ibi 267 . 2 (𝐸/FldExt𝐹 → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
65simpld 494 1 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110   class class class wbr 5089  cfv 6477  (class class class)co 7341  Basecbs 17112  s cress 17133  SubRingcsubrg 20477  Fieldcfield 20638  /FldExtcfldext 33641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-xp 5620  df-iota 6433  df-fv 6485  df-ov 7344  df-fldext 33644
This theorem is referenced by:  fldextsdrg  33657  fldextsralvec  33658  extdgcl  33659  extdggt0  33660  extdg1id  33669  fldextchr  33672
  Copyright terms: Public domain W3C validator