| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextress | Structured version Visualization version GIF version | ||
| Description: Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| fldextress | ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextfld1 33650 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
| 2 | fldextfld2 33651 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
| 3 | brfldext 33648 | . . . 4 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐸/FldExt𝐹 → (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 SubRingcsubrg 20485 Fieldcfield 20646 /FldExtcfldext 33641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-iota 6467 df-fv 6522 df-ov 7393 df-fldext 33644 |
| This theorem is referenced by: fldextsdrg 33657 fldextsralvec 33658 extdgcl 33659 extdggt0 33660 extdg1id 33668 fldextchr 33671 |
| Copyright terms: Public domain | W3C validator |