Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextress Structured version   Visualization version   GIF version

Theorem fldextress 31629
Description: Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldextress (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))

Proof of Theorem fldextress
StepHypRef Expression
1 fldextfld1 31626 . . . 4 (𝐸/FldExt𝐹𝐸 ∈ Field)
2 fldextfld2 31627 . . . 4 (𝐸/FldExt𝐹𝐹 ∈ Field)
3 brfldext 31624 . . . 4 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
41, 2, 3syl2anc 583 . . 3 (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
54ibi 266 . 2 (𝐸/FldExt𝐹 → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
65simpld 494 1 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  Fieldcfield 19907  SubRingcsubrg 19935  /FldExtcfldext 31615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-iota 6376  df-fv 6426  df-ov 7258  df-fldext 31619
This theorem is referenced by:  fldextsralvec  31632  extdgcl  31633  extdggt0  31634  extdg1id  31640  fldextchr  31642
  Copyright terms: Public domain W3C validator