Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextress Structured version   Visualization version   GIF version

Theorem fldextress 33654
Description: Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldextress (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))

Proof of Theorem fldextress
StepHypRef Expression
1 fldextfld1 33650 . . . 4 (𝐸/FldExt𝐹𝐸 ∈ Field)
2 fldextfld2 33651 . . . 4 (𝐸/FldExt𝐹𝐹 ∈ Field)
3 brfldext 33648 . . . 4 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
41, 2, 3syl2anc 584 . . 3 (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
54ibi 267 . 2 (𝐸/FldExt𝐹 → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
65simpld 494 1 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  SubRingcsubrg 20485  Fieldcfield 20646  /FldExtcfldext 33641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-iota 6467  df-fv 6522  df-ov 7393  df-fldext 33644
This theorem is referenced by:  fldextsdrg  33657  fldextsralvec  33658  extdgcl  33659  extdggt0  33660  extdg1id  33668  fldextchr  33671
  Copyright terms: Public domain W3C validator