Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextress | Structured version Visualization version GIF version |
Description: Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
fldextress | ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fldextfld1 31724 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
2 | fldextfld2 31725 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
3 | brfldext 31722 | . . . 4 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) | |
4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
5 | 4 | ibi 266 | . 2 ⊢ (𝐸/FldExt𝐹 → (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
6 | 5 | simpld 495 | 1 ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 Fieldcfield 19992 SubRingcsubrg 20020 /FldExtcfldext 31713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-iota 6391 df-fv 6441 df-ov 7278 df-fldext 31717 |
This theorem is referenced by: fldextsralvec 31730 extdgcl 31731 extdggt0 31732 extdg1id 31738 fldextchr 31740 |
Copyright terms: Public domain | W3C validator |