| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextress | Structured version Visualization version GIF version | ||
| Description: Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| fldextress | ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextfld1 33650 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
| 2 | fldextfld2 33651 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
| 3 | brfldext 33648 | . . . 4 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐸/FldExt𝐹 → (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 ↾s cress 17133 SubRingcsubrg 20477 Fieldcfield 20638 /FldExtcfldext 33641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-xp 5620 df-iota 6433 df-fv 6485 df-ov 7344 df-fldext 33644 |
| This theorem is referenced by: fldextsdrg 33657 fldextsralvec 33658 extdgcl 33659 extdggt0 33660 extdg1id 33669 fldextchr 33672 |
| Copyright terms: Public domain | W3C validator |