Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextress Structured version   Visualization version   GIF version

Theorem fldextress 33675
Description: Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldextress (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))

Proof of Theorem fldextress
StepHypRef Expression
1 fldextfld1 33671 . . . 4 (𝐸/FldExt𝐹𝐸 ∈ Field)
2 fldextfld2 33672 . . . 4 (𝐸/FldExt𝐹𝐹 ∈ Field)
3 brfldext 33669 . . . 4 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
41, 2, 3syl2anc 584 . . 3 (𝐸/FldExt𝐹 → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
54ibi 267 . 2 (𝐸/FldExt𝐹 → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
65simpld 494 1 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17130  s cress 17151  SubRingcsubrg 20494  Fieldcfield 20655  /FldExtcfldext 33662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-iota 6445  df-fv 6497  df-ov 7358  df-fldext 33665
This theorem is referenced by:  fldextsdrg  33678  fldextsralvec  33679  extdgcl  33680  extdggt0  33681  extdg1id  33690  fldextchr  33693
  Copyright terms: Public domain W3C validator