![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finexttrb | Structured version Visualization version GIF version |
Description: The extension 𝐸 of 𝐾 is finite if and only if 𝐸 is finite over 𝐹 and 𝐹 is finite over 𝐾. Corollary 1.3 of [Lang] , p. 225. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
Ref | Expression |
---|---|
finexttrb | ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extdgmul 33674 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾))) | |
2 | 1 | eleq1d 2829 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸[:]𝐾) ∈ ℕ0 ↔ ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) ∈ ℕ0)) |
3 | fldexttr 33671 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐾) | |
4 | brfinext 33666 | . . 3 ⊢ (𝐸/FldExt𝐾 → (𝐸/FinExt𝐾 ↔ (𝐸[:]𝐾) ∈ ℕ0)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸[:]𝐾) ∈ ℕ0)) |
6 | brfinext 33666 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0)) | |
7 | brfinext 33666 | . . . 4 ⊢ (𝐹/FldExt𝐾 → (𝐹/FinExt𝐾 ↔ (𝐹[:]𝐾) ∈ ℕ0)) | |
8 | 6, 7 | bi2anan9 637 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾) ↔ ((𝐸[:]𝐹) ∈ ℕ0 ∧ (𝐹[:]𝐾) ∈ ℕ0))) |
9 | extdgcl 33669 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) ∈ ℕ0*) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐹) ∈ ℕ0*) |
11 | extdgcl 33669 | . . . . 5 ⊢ (𝐹/FldExt𝐾 → (𝐹[:]𝐾) ∈ ℕ0*) | |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) ∈ ℕ0*) |
13 | extdggt0 33670 | . . . . . 6 ⊢ (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹)) | |
14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 0 < (𝐸[:]𝐹)) |
15 | 14 | gt0ne0d 11854 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐹) ≠ 0) |
16 | extdggt0 33670 | . . . . . 6 ⊢ (𝐹/FldExt𝐾 → 0 < (𝐹[:]𝐾)) | |
17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 0 < (𝐹[:]𝐾)) |
18 | 17 | gt0ne0d 11854 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) ≠ 0) |
19 | nn0xmulclb 32778 | . . . 4 ⊢ ((((𝐸[:]𝐹) ∈ ℕ0* ∧ (𝐹[:]𝐾) ∈ ℕ0*) ∧ ((𝐸[:]𝐹) ≠ 0 ∧ (𝐹[:]𝐾) ≠ 0)) → (((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) ∈ ℕ0 ↔ ((𝐸[:]𝐹) ∈ ℕ0 ∧ (𝐹[:]𝐾) ∈ ℕ0))) | |
20 | 10, 12, 15, 18, 19 | syl22anc 838 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) ∈ ℕ0 ↔ ((𝐸[:]𝐹) ∈ ℕ0 ∧ (𝐹[:]𝐾) ∈ ℕ0))) |
21 | 8, 20 | bitr4d 282 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾) ↔ ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) ∈ ℕ0)) |
22 | 2, 5, 21 | 3bitr4d 311 | 1 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 (class class class)co 7448 0cc0 11184 < clt 11324 ℕ0cn0 12553 ℕ0*cxnn0 12625 ·e cxmu 13174 /FldExtcfldext 33651 /FinExtcfinext 33652 [:]cextdg 33654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-rpss 7758 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-r1 9833 df-rank 9834 df-dju 9970 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-xmul 13177 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ocomp 17332 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-mri 17646 df-acs 17647 df-proset 18365 df-drs 18366 df-poset 18383 df-ipo 18598 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-nzr 20539 df-subrng 20572 df-subrg 20597 df-drng 20753 df-field 20754 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lmhm 21044 df-lbs 21097 df-lvec 21125 df-sra 21195 df-rgmod 21196 df-dsmm 21775 df-frlm 21790 df-uvc 21826 df-lindf 21849 df-linds 21850 df-dim 33612 df-fldext 33655 df-extdg 33656 df-finext 33657 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |