Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > finexttrb | Structured version Visualization version GIF version |
Description: The extension 𝐸 of 𝐾 is finite if and only if 𝐸 is finite over 𝐹 and 𝐹 is finite over 𝐾. Corollary 1.3 of [Lang] , p. 225. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
Ref | Expression |
---|---|
finexttrb | ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extdgmul 31269 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾))) | |
2 | 1 | eleq1d 2836 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸[:]𝐾) ∈ ℕ0 ↔ ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) ∈ ℕ0)) |
3 | fldexttr 31266 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐾) | |
4 | brfinext 31261 | . . 3 ⊢ (𝐸/FldExt𝐾 → (𝐸/FinExt𝐾 ↔ (𝐸[:]𝐾) ∈ ℕ0)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸[:]𝐾) ∈ ℕ0)) |
6 | brfinext 31261 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0)) | |
7 | brfinext 31261 | . . . 4 ⊢ (𝐹/FldExt𝐾 → (𝐹/FinExt𝐾 ↔ (𝐹[:]𝐾) ∈ ℕ0)) | |
8 | 6, 7 | bi2anan9 638 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾) ↔ ((𝐸[:]𝐹) ∈ ℕ0 ∧ (𝐹[:]𝐾) ∈ ℕ0))) |
9 | extdgcl 31264 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) ∈ ℕ0*) | |
10 | 9 | adantr 484 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐹) ∈ ℕ0*) |
11 | extdgcl 31264 | . . . . 5 ⊢ (𝐹/FldExt𝐾 → (𝐹[:]𝐾) ∈ ℕ0*) | |
12 | 11 | adantl 485 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) ∈ ℕ0*) |
13 | extdggt0 31265 | . . . . . 6 ⊢ (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹)) | |
14 | 13 | adantr 484 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 0 < (𝐸[:]𝐹)) |
15 | 14 | gt0ne0d 11255 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐹) ≠ 0) |
16 | extdggt0 31265 | . . . . . 6 ⊢ (𝐹/FldExt𝐾 → 0 < (𝐹[:]𝐾)) | |
17 | 16 | adantl 485 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 0 < (𝐹[:]𝐾)) |
18 | 17 | gt0ne0d 11255 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) ≠ 0) |
19 | nn0xmulclb 30630 | . . . 4 ⊢ ((((𝐸[:]𝐹) ∈ ℕ0* ∧ (𝐹[:]𝐾) ∈ ℕ0*) ∧ ((𝐸[:]𝐹) ≠ 0 ∧ (𝐹[:]𝐾) ≠ 0)) → (((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) ∈ ℕ0 ↔ ((𝐸[:]𝐹) ∈ ℕ0 ∧ (𝐹[:]𝐾) ∈ ℕ0))) | |
20 | 10, 12, 15, 18, 19 | syl22anc 837 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) ∈ ℕ0 ↔ ((𝐸[:]𝐹) ∈ ℕ0 ∧ (𝐹[:]𝐾) ∈ ℕ0))) |
21 | 8, 20 | bitr4d 285 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾) ↔ ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) ∈ ℕ0)) |
22 | 2, 5, 21 | 3bitr4d 314 | 1 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5036 (class class class)co 7156 0cc0 10588 < clt 10726 ℕ0cn0 11947 ℕ0*cxnn0 12019 ·e cxmu 12560 /FldExtcfldext 31246 /FinExtcfinext 31247 [:]cextdg 31249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-reg 9102 ax-inf2 9150 ax-ac2 9936 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-rpss 7453 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-tpos 7908 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-oadd 8122 df-er 8305 df-map 8424 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-sup 8952 df-oi 9020 df-r1 9239 df-rank 9240 df-dju 9376 df-card 9414 df-acn 9417 df-ac 9589 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-xnn0 12020 df-z 12034 df-dec 12151 df-uz 12296 df-xmul 12563 df-fz 12953 df-fzo 13096 df-seq 13432 df-hash 13754 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-mulr 16650 df-sca 16652 df-vsca 16653 df-ip 16654 df-tset 16655 df-ple 16656 df-ocomp 16657 df-ds 16658 df-hom 16660 df-cco 16661 df-0g 16786 df-gsum 16787 df-prds 16792 df-pws 16794 df-mre 16928 df-mrc 16929 df-mri 16930 df-acs 16931 df-proset 17617 df-drs 17618 df-poset 17635 df-ipo 17841 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-mhm 18035 df-submnd 18036 df-grp 18185 df-minusg 18186 df-sbg 18187 df-mulg 18305 df-subg 18356 df-ghm 18436 df-cntz 18527 df-cmn 18988 df-abl 18989 df-mgp 19321 df-ur 19333 df-ring 19380 df-oppr 19457 df-dvdsr 19475 df-unit 19476 df-invr 19506 df-drng 19585 df-field 19586 df-subrg 19614 df-lmod 19717 df-lss 19785 df-lsp 19825 df-lmhm 19875 df-lbs 19928 df-lvec 19956 df-sra 20025 df-rgmod 20026 df-nzr 20112 df-dsmm 20510 df-frlm 20525 df-uvc 20561 df-lindf 20584 df-linds 20585 df-dim 31218 df-fldext 31250 df-extdg 31251 df-finext 31252 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |