Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > finexttrb | Structured version Visualization version GIF version |
Description: The extension 𝐸 of 𝐾 is finite if and only if 𝐸 is finite over 𝐹 and 𝐹 is finite over 𝐾. Corollary 1.3 of [Lang] , p. 225. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
Ref | Expression |
---|---|
finexttrb | ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extdgmul 31638 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾))) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸[:]𝐾) ∈ ℕ0 ↔ ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) ∈ ℕ0)) |
3 | fldexttr 31635 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐾) | |
4 | brfinext 31630 | . . 3 ⊢ (𝐸/FldExt𝐾 → (𝐸/FinExt𝐾 ↔ (𝐸[:]𝐾) ∈ ℕ0)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸[:]𝐾) ∈ ℕ0)) |
6 | brfinext 31630 | . . . 4 ⊢ (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0)) | |
7 | brfinext 31630 | . . . 4 ⊢ (𝐹/FldExt𝐾 → (𝐹/FinExt𝐾 ↔ (𝐹[:]𝐾) ∈ ℕ0)) | |
8 | 6, 7 | bi2anan9 635 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾) ↔ ((𝐸[:]𝐹) ∈ ℕ0 ∧ (𝐹[:]𝐾) ∈ ℕ0))) |
9 | extdgcl 31633 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) ∈ ℕ0*) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐹) ∈ ℕ0*) |
11 | extdgcl 31633 | . . . . 5 ⊢ (𝐹/FldExt𝐾 → (𝐹[:]𝐾) ∈ ℕ0*) | |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) ∈ ℕ0*) |
13 | extdggt0 31634 | . . . . . 6 ⊢ (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹)) | |
14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 0 < (𝐸[:]𝐹)) |
15 | 14 | gt0ne0d 11469 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐹) ≠ 0) |
16 | extdggt0 31634 | . . . . . 6 ⊢ (𝐹/FldExt𝐾 → 0 < (𝐹[:]𝐾)) | |
17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 0 < (𝐹[:]𝐾)) |
18 | 17 | gt0ne0d 11469 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹[:]𝐾) ≠ 0) |
19 | nn0xmulclb 30996 | . . . 4 ⊢ ((((𝐸[:]𝐹) ∈ ℕ0* ∧ (𝐹[:]𝐾) ∈ ℕ0*) ∧ ((𝐸[:]𝐹) ≠ 0 ∧ (𝐹[:]𝐾) ≠ 0)) → (((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) ∈ ℕ0 ↔ ((𝐸[:]𝐹) ∈ ℕ0 ∧ (𝐹[:]𝐾) ∈ ℕ0))) | |
20 | 10, 12, 15, 18, 19 | syl22anc 835 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) ∈ ℕ0 ↔ ((𝐸[:]𝐹) ∈ ℕ0 ∧ (𝐹[:]𝐾) ∈ ℕ0))) |
21 | 8, 20 | bitr4d 281 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾) ↔ ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)) ∈ ℕ0)) |
22 | 2, 5, 21 | 3bitr4d 310 | 1 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 (class class class)co 7255 0cc0 10802 < clt 10940 ℕ0cn0 12163 ℕ0*cxnn0 12235 ·e cxmu 12776 /FldExtcfldext 31615 /FinExtcfinext 31616 [:]cextdg 31618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-rpss 7554 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-r1 9453 df-rank 9454 df-dju 9590 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-xmul 12779 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ocomp 16909 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-mri 17214 df-acs 17215 df-proset 17928 df-drs 17929 df-poset 17946 df-ipo 18161 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-field 19909 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lmhm 20199 df-lbs 20252 df-lvec 20280 df-sra 20349 df-rgmod 20350 df-nzr 20442 df-dsmm 20849 df-frlm 20864 df-uvc 20900 df-lindf 20923 df-linds 20924 df-dim 31587 df-fldext 31619 df-extdg 31620 df-finext 31621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |