MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrpss Structured version   Visualization version   GIF version

Theorem brrpss 7702
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
brrpss.a 𝐵 ∈ V
Assertion
Ref Expression
brrpss (𝐴 [] 𝐵𝐴𝐵)

Proof of Theorem brrpss
StepHypRef Expression
1 brrpss.a . 2 𝐵 ∈ V
2 brrpssg 7701 . 2 (𝐵 ∈ V → (𝐴 [] 𝐵𝐴𝐵))
31, 2ax-mp 5 1 (𝐴 [] 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3447  wpss 3915   class class class wbr 5107   [] crpss 7698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-rpss 7699
This theorem is referenced by:  porpss  7703  sorpss  7704  fin23lem40  10304  compssiso  10327  isfin1-3  10339  fin12  10366  zorng  10457  fin2solem  37600  psshepw  43777
  Copyright terms: Public domain W3C validator