| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrpss | Structured version Visualization version GIF version | ||
| Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| brrpss.a | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brrpss | ⊢ (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrpss.a | . 2 ⊢ 𝐵 ∈ V | |
| 2 | brrpssg 7701 | . 2 ⊢ (𝐵 ∈ V → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3447 ⊊ wpss 3915 class class class wbr 5107 [⊊] crpss 7698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-rpss 7699 |
| This theorem is referenced by: porpss 7703 sorpss 7704 fin23lem40 10304 compssiso 10327 isfin1-3 10339 fin12 10366 zorng 10457 fin2solem 37600 psshepw 43777 |
| Copyright terms: Public domain | W3C validator |