MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrpss Structured version   Visualization version   GIF version

Theorem brrpss 7557
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
brrpss.a 𝐵 ∈ V
Assertion
Ref Expression
brrpss (𝐴 [] 𝐵𝐴𝐵)

Proof of Theorem brrpss
StepHypRef Expression
1 brrpss.a . 2 𝐵 ∈ V
2 brrpssg 7556 . 2 (𝐵 ∈ V → (𝐴 [] 𝐵𝐴𝐵))
31, 2ax-mp 5 1 (𝐴 [] 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  Vcvv 3422  wpss 3884   class class class wbr 5070   [] crpss 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-rpss 7554
This theorem is referenced by:  porpss  7558  sorpss  7559  fin23lem40  10038  compssiso  10061  isfin1-3  10073  fin12  10100  zorng  10191  fin2solem  35690  psshepw  41285
  Copyright terms: Public domain W3C validator