Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brrpss | Structured version Visualization version GIF version |
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
brrpss.a | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brrpss | ⊢ (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrpss.a | . 2 ⊢ 𝐵 ∈ V | |
2 | brrpssg 7556 | . 2 ⊢ (𝐵 ∈ V → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 Vcvv 3422 ⊊ wpss 3884 class class class wbr 5070 [⊊] crpss 7553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-rpss 7554 |
This theorem is referenced by: porpss 7558 sorpss 7559 fin23lem40 10038 compssiso 10061 isfin1-3 10073 fin12 10100 zorng 10191 fin2solem 35690 psshepw 41285 |
Copyright terms: Public domain | W3C validator |