Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brrpss | Structured version Visualization version GIF version |
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
brrpss.a | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brrpss | ⊢ (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrpss.a | . 2 ⊢ 𝐵 ∈ V | |
2 | brrpssg 7513 | . 2 ⊢ (𝐵 ∈ V → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2110 Vcvv 3408 ⊊ wpss 3867 class class class wbr 5053 [⊊] crpss 7510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-rpss 7511 |
This theorem is referenced by: porpss 7515 sorpss 7516 fin23lem40 9965 compssiso 9988 isfin1-3 10000 fin12 10027 zorng 10118 fin2solem 35500 psshepw 41073 |
Copyright terms: Public domain | W3C validator |