| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrpss | Structured version Visualization version GIF version | ||
| Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| brrpss.a | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brrpss | ⊢ (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrpss.a | . 2 ⊢ 𝐵 ∈ V | |
| 2 | brrpssg 7708 | . 2 ⊢ (𝐵 ∈ V → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3455 ⊊ wpss 3923 class class class wbr 5115 [⊊] crpss 7705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-xp 5652 df-rel 5653 df-rpss 7706 |
| This theorem is referenced by: porpss 7710 sorpss 7711 fin23lem40 10322 compssiso 10345 isfin1-3 10357 fin12 10384 zorng 10475 fin2solem 37597 psshepw 43749 |
| Copyright terms: Public domain | W3C validator |