| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrpss | Structured version Visualization version GIF version | ||
| Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| brrpss.a | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brrpss | ⊢ (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrpss.a | . 2 ⊢ 𝐵 ∈ V | |
| 2 | brrpssg 7658 | . 2 ⊢ (𝐵 ∈ V → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ⊊ wpss 3898 class class class wbr 5089 [⊊] crpss 7655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-rpss 7656 |
| This theorem is referenced by: porpss 7660 sorpss 7661 fin23lem40 10242 compssiso 10265 isfin1-3 10277 fin12 10304 zorng 10395 fin2solem 37645 psshepw 43880 |
| Copyright terms: Public domain | W3C validator |