MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem40 Structured version   Visualization version   GIF version

Theorem fin23lem40 9990
Description: Lemma for fin23 10028. FinII sets satisfy the descending chain condition. (Contributed by Stefan O'Rear, 3-Nov-2014.)
Hypothesis
Ref Expression
fin23lem40.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem40 (𝐴 ∈ FinII𝐴𝐹)
Distinct variable groups:   𝑔,𝑎,𝑥,𝐴   𝐹,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑔)

Proof of Theorem fin23lem40
Dummy variables 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8551 . . . 4 (𝑓 ∈ (𝒫 𝐴m ω) → 𝑓:ω⟶𝒫 𝐴)
2 simpl 486 . . . . . 6 ((𝐴 ∈ FinII ∧ (𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏))) → 𝐴 ∈ FinII)
3 frn 6571 . . . . . . 7 (𝑓:ω⟶𝒫 𝐴 → ran 𝑓 ⊆ 𝒫 𝐴)
43ad2antrl 728 . . . . . 6 ((𝐴 ∈ FinII ∧ (𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏))) → ran 𝑓 ⊆ 𝒫 𝐴)
5 fdm 6573 . . . . . . . . 9 (𝑓:ω⟶𝒫 𝐴 → dom 𝑓 = ω)
6 peano1 7686 . . . . . . . . . 10 ∅ ∈ ω
7 ne0i 4264 . . . . . . . . . 10 (∅ ∈ ω → ω ≠ ∅)
86, 7mp1i 13 . . . . . . . . 9 (𝑓:ω⟶𝒫 𝐴 → ω ≠ ∅)
95, 8eqnetrd 3009 . . . . . . . 8 (𝑓:ω⟶𝒫 𝐴 → dom 𝑓 ≠ ∅)
10 dm0rn0 5809 . . . . . . . . 9 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
1110necon3bii 2994 . . . . . . . 8 (dom 𝑓 ≠ ∅ ↔ ran 𝑓 ≠ ∅)
129, 11sylib 221 . . . . . . 7 (𝑓:ω⟶𝒫 𝐴 → ran 𝑓 ≠ ∅)
1312ad2antrl 728 . . . . . 6 ((𝐴 ∈ FinII ∧ (𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏))) → ran 𝑓 ≠ ∅)
14 ffn 6564 . . . . . . . . 9 (𝑓:ω⟶𝒫 𝐴𝑓 Fn ω)
1514ad2antrl 728 . . . . . . . 8 ((𝐴 ∈ FinII ∧ (𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏))) → 𝑓 Fn ω)
16 sspss 4029 . . . . . . . . . . 11 ((𝑓‘suc 𝑏) ⊆ (𝑓𝑏) ↔ ((𝑓‘suc 𝑏) ⊊ (𝑓𝑏) ∨ (𝑓‘suc 𝑏) = (𝑓𝑏)))
17 fvex 6749 . . . . . . . . . . . . . 14 (𝑓𝑏) ∈ V
18 fvex 6749 . . . . . . . . . . . . . 14 (𝑓‘suc 𝑏) ∈ V
1917, 18brcnv 5766 . . . . . . . . . . . . 13 ((𝑓𝑏) [] (𝑓‘suc 𝑏) ↔ (𝑓‘suc 𝑏) [] (𝑓𝑏))
2017brrpss 7533 . . . . . . . . . . . . 13 ((𝑓‘suc 𝑏) [] (𝑓𝑏) ↔ (𝑓‘suc 𝑏) ⊊ (𝑓𝑏))
2119, 20bitri 278 . . . . . . . . . . . 12 ((𝑓𝑏) [] (𝑓‘suc 𝑏) ↔ (𝑓‘suc 𝑏) ⊊ (𝑓𝑏))
22 eqcom 2745 . . . . . . . . . . . 12 ((𝑓𝑏) = (𝑓‘suc 𝑏) ↔ (𝑓‘suc 𝑏) = (𝑓𝑏))
2321, 22orbi12i 915 . . . . . . . . . . 11 (((𝑓𝑏) [] (𝑓‘suc 𝑏) ∨ (𝑓𝑏) = (𝑓‘suc 𝑏)) ↔ ((𝑓‘suc 𝑏) ⊊ (𝑓𝑏) ∨ (𝑓‘suc 𝑏) = (𝑓𝑏)))
2416, 23sylbb2 241 . . . . . . . . . 10 ((𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → ((𝑓𝑏) [] (𝑓‘suc 𝑏) ∨ (𝑓𝑏) = (𝑓‘suc 𝑏)))
2524ralimi 3085 . . . . . . . . 9 (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → ∀𝑏 ∈ ω ((𝑓𝑏) [] (𝑓‘suc 𝑏) ∨ (𝑓𝑏) = (𝑓‘suc 𝑏)))
2625ad2antll 729 . . . . . . . 8 ((𝐴 ∈ FinII ∧ (𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏))) → ∀𝑏 ∈ ω ((𝑓𝑏) [] (𝑓‘suc 𝑏) ∨ (𝑓𝑏) = (𝑓‘suc 𝑏)))
27 porpss 7534 . . . . . . . . . 10 [] Po ran 𝑓
28 cnvpo 6165 . . . . . . . . . 10 ( [] Po ran 𝑓 [] Po ran 𝑓)
2927, 28mpbi 233 . . . . . . . . 9 [] Po ran 𝑓
3029a1i 11 . . . . . . . 8 ((𝐴 ∈ FinII ∧ (𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏))) → [] Po ran 𝑓)
31 sornom 9916 . . . . . . . 8 ((𝑓 Fn ω ∧ ∀𝑏 ∈ ω ((𝑓𝑏) [] (𝑓‘suc 𝑏) ∨ (𝑓𝑏) = (𝑓‘suc 𝑏)) ∧ [] Po ran 𝑓) → [] Or ran 𝑓)
3215, 26, 30, 31syl3anc 1373 . . . . . . 7 ((𝐴 ∈ FinII ∧ (𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏))) → [] Or ran 𝑓)
33 cnvso 6166 . . . . . . 7 ( [] Or ran 𝑓 [] Or ran 𝑓)
3432, 33sylibr 237 . . . . . 6 ((𝐴 ∈ FinII ∧ (𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏))) → [] Or ran 𝑓)
35 fin2i2 9957 . . . . . 6 (((𝐴 ∈ FinII ∧ ran 𝑓 ⊆ 𝒫 𝐴) ∧ (ran 𝑓 ≠ ∅ ∧ [] Or ran 𝑓)) → ran 𝑓 ∈ ran 𝑓)
362, 4, 13, 34, 35syl22anc 839 . . . . 5 ((𝐴 ∈ FinII ∧ (𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏))) → ran 𝑓 ∈ ran 𝑓)
3736expr 460 . . . 4 ((𝐴 ∈ FinII𝑓:ω⟶𝒫 𝐴) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → ran 𝑓 ∈ ran 𝑓))
381, 37sylan2 596 . . 3 ((𝐴 ∈ FinII𝑓 ∈ (𝒫 𝐴m ω)) → (∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → ran 𝑓 ∈ ran 𝑓))
3938ralrimiva 3106 . 2 (𝐴 ∈ FinII → ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → ran 𝑓 ∈ ran 𝑓))
40 fin23lem40.f . . 3 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
4140isfin3ds 9968 . 2 (𝐴 ∈ FinII → (𝐴𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑏 ∈ ω (𝑓‘suc 𝑏) ⊆ (𝑓𝑏) → ran 𝑓 ∈ ran 𝑓)))
4239, 41mpbird 260 1 (𝐴 ∈ FinII𝐴𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847   = wceq 1543  wcel 2111  {cab 2715  wne 2941  wral 3062  wss 3881  wpss 3882  c0 4252  𝒫 cpw 4528   cint 4874   class class class wbr 5068   Po wpo 5481   Or wor 5482  ccnv 5565  dom cdm 5566  ran crn 5567  suc csuc 6233   Fn wfn 6393  wf 6394  cfv 6398  (class class class)co 7232   [] crpss 7529  ωcom 7663  m cmap 8529  FinIIcfin2 9918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-fv 6406  df-ov 7235  df-oprab 7236  df-mpo 7237  df-rpss 7530  df-om 7664  df-1st 7780  df-2nd 7781  df-map 8531  df-fin2 9925
This theorem is referenced by:  fin23  10028
  Copyright terms: Public domain W3C validator