MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem40 Structured version   Visualization version   GIF version

Theorem fin23lem40 10348
Description: Lemma for fin23 10386. FinII sets satisfy the descending chain condition. (Contributed by Stefan O'Rear, 3-Nov-2014.)
Hypothesis
Ref Expression
fin23lem40.f 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
Assertion
Ref Expression
fin23lem40 (𝐴 ∈ FinII β†’ 𝐴 ∈ 𝐹)
Distinct variable groups:   𝑔,π‘Ž,π‘₯,𝐴   𝐹,π‘Ž
Allowed substitution hints:   𝐹(π‘₯,𝑔)

Proof of Theorem fin23lem40
Dummy variables 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8845 . . . 4 (𝑓 ∈ (𝒫 𝐴 ↑m Ο‰) β†’ 𝑓:Ο‰βŸΆπ’« 𝐴)
2 simpl 481 . . . . . 6 ((𝐴 ∈ FinII ∧ (𝑓:Ο‰βŸΆπ’« 𝐴 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘))) β†’ 𝐴 ∈ FinII)
3 frn 6723 . . . . . . 7 (𝑓:Ο‰βŸΆπ’« 𝐴 β†’ ran 𝑓 βŠ† 𝒫 𝐴)
43ad2antrl 724 . . . . . 6 ((𝐴 ∈ FinII ∧ (𝑓:Ο‰βŸΆπ’« 𝐴 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘))) β†’ ran 𝑓 βŠ† 𝒫 𝐴)
5 fdm 6725 . . . . . . . . 9 (𝑓:Ο‰βŸΆπ’« 𝐴 β†’ dom 𝑓 = Ο‰)
6 peano1 7881 . . . . . . . . . 10 βˆ… ∈ Ο‰
7 ne0i 4333 . . . . . . . . . 10 (βˆ… ∈ Ο‰ β†’ Ο‰ β‰  βˆ…)
86, 7mp1i 13 . . . . . . . . 9 (𝑓:Ο‰βŸΆπ’« 𝐴 β†’ Ο‰ β‰  βˆ…)
95, 8eqnetrd 3006 . . . . . . . 8 (𝑓:Ο‰βŸΆπ’« 𝐴 β†’ dom 𝑓 β‰  βˆ…)
10 dm0rn0 5923 . . . . . . . . 9 (dom 𝑓 = βˆ… ↔ ran 𝑓 = βˆ…)
1110necon3bii 2991 . . . . . . . 8 (dom 𝑓 β‰  βˆ… ↔ ran 𝑓 β‰  βˆ…)
129, 11sylib 217 . . . . . . 7 (𝑓:Ο‰βŸΆπ’« 𝐴 β†’ ran 𝑓 β‰  βˆ…)
1312ad2antrl 724 . . . . . 6 ((𝐴 ∈ FinII ∧ (𝑓:Ο‰βŸΆπ’« 𝐴 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘))) β†’ ran 𝑓 β‰  βˆ…)
14 ffn 6716 . . . . . . . . 9 (𝑓:Ο‰βŸΆπ’« 𝐴 β†’ 𝑓 Fn Ο‰)
1514ad2antrl 724 . . . . . . . 8 ((𝐴 ∈ FinII ∧ (𝑓:Ο‰βŸΆπ’« 𝐴 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘))) β†’ 𝑓 Fn Ο‰)
16 sspss 4098 . . . . . . . . . . 11 ((π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) ↔ ((π‘“β€˜suc 𝑏) ⊊ (π‘“β€˜π‘) ∨ (π‘“β€˜suc 𝑏) = (π‘“β€˜π‘)))
17 fvex 6903 . . . . . . . . . . . . . 14 (π‘“β€˜π‘) ∈ V
18 fvex 6903 . . . . . . . . . . . . . 14 (π‘“β€˜suc 𝑏) ∈ V
1917, 18brcnv 5881 . . . . . . . . . . . . 13 ((π‘“β€˜π‘)β—‘ [⊊] (π‘“β€˜suc 𝑏) ↔ (π‘“β€˜suc 𝑏) [⊊] (π‘“β€˜π‘))
2017brrpss 7718 . . . . . . . . . . . . 13 ((π‘“β€˜suc 𝑏) [⊊] (π‘“β€˜π‘) ↔ (π‘“β€˜suc 𝑏) ⊊ (π‘“β€˜π‘))
2119, 20bitri 274 . . . . . . . . . . . 12 ((π‘“β€˜π‘)β—‘ [⊊] (π‘“β€˜suc 𝑏) ↔ (π‘“β€˜suc 𝑏) ⊊ (π‘“β€˜π‘))
22 eqcom 2737 . . . . . . . . . . . 12 ((π‘“β€˜π‘) = (π‘“β€˜suc 𝑏) ↔ (π‘“β€˜suc 𝑏) = (π‘“β€˜π‘))
2321, 22orbi12i 911 . . . . . . . . . . 11 (((π‘“β€˜π‘)β—‘ [⊊] (π‘“β€˜suc 𝑏) ∨ (π‘“β€˜π‘) = (π‘“β€˜suc 𝑏)) ↔ ((π‘“β€˜suc 𝑏) ⊊ (π‘“β€˜π‘) ∨ (π‘“β€˜suc 𝑏) = (π‘“β€˜π‘)))
2416, 23sylbb2 237 . . . . . . . . . 10 ((π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) β†’ ((π‘“β€˜π‘)β—‘ [⊊] (π‘“β€˜suc 𝑏) ∨ (π‘“β€˜π‘) = (π‘“β€˜suc 𝑏)))
2524ralimi 3081 . . . . . . . . 9 (βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) β†’ βˆ€π‘ ∈ Ο‰ ((π‘“β€˜π‘)β—‘ [⊊] (π‘“β€˜suc 𝑏) ∨ (π‘“β€˜π‘) = (π‘“β€˜suc 𝑏)))
2625ad2antll 725 . . . . . . . 8 ((𝐴 ∈ FinII ∧ (𝑓:Ο‰βŸΆπ’« 𝐴 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘))) β†’ βˆ€π‘ ∈ Ο‰ ((π‘“β€˜π‘)β—‘ [⊊] (π‘“β€˜suc 𝑏) ∨ (π‘“β€˜π‘) = (π‘“β€˜suc 𝑏)))
27 porpss 7719 . . . . . . . . . 10 [⊊] Po ran 𝑓
28 cnvpo 6285 . . . . . . . . . 10 ( [⊊] Po ran 𝑓 ↔ β—‘ [⊊] Po ran 𝑓)
2927, 28mpbi 229 . . . . . . . . 9 β—‘ [⊊] Po ran 𝑓
3029a1i 11 . . . . . . . 8 ((𝐴 ∈ FinII ∧ (𝑓:Ο‰βŸΆπ’« 𝐴 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘))) β†’ β—‘ [⊊] Po ran 𝑓)
31 sornom 10274 . . . . . . . 8 ((𝑓 Fn Ο‰ ∧ βˆ€π‘ ∈ Ο‰ ((π‘“β€˜π‘)β—‘ [⊊] (π‘“β€˜suc 𝑏) ∨ (π‘“β€˜π‘) = (π‘“β€˜suc 𝑏)) ∧ β—‘ [⊊] Po ran 𝑓) β†’ β—‘ [⊊] Or ran 𝑓)
3215, 26, 30, 31syl3anc 1369 . . . . . . 7 ((𝐴 ∈ FinII ∧ (𝑓:Ο‰βŸΆπ’« 𝐴 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘))) β†’ β—‘ [⊊] Or ran 𝑓)
33 cnvso 6286 . . . . . . 7 ( [⊊] Or ran 𝑓 ↔ β—‘ [⊊] Or ran 𝑓)
3432, 33sylibr 233 . . . . . 6 ((𝐴 ∈ FinII ∧ (𝑓:Ο‰βŸΆπ’« 𝐴 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘))) β†’ [⊊] Or ran 𝑓)
35 fin2i2 10315 . . . . . 6 (((𝐴 ∈ FinII ∧ ran 𝑓 βŠ† 𝒫 𝐴) ∧ (ran 𝑓 β‰  βˆ… ∧ [⊊] Or ran 𝑓)) β†’ ∩ ran 𝑓 ∈ ran 𝑓)
362, 4, 13, 34, 35syl22anc 835 . . . . 5 ((𝐴 ∈ FinII ∧ (𝑓:Ο‰βŸΆπ’« 𝐴 ∧ βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘))) β†’ ∩ ran 𝑓 ∈ ran 𝑓)
3736expr 455 . . . 4 ((𝐴 ∈ FinII ∧ 𝑓:Ο‰βŸΆπ’« 𝐴) β†’ (βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) β†’ ∩ ran 𝑓 ∈ ran 𝑓))
381, 37sylan2 591 . . 3 ((𝐴 ∈ FinII ∧ 𝑓 ∈ (𝒫 𝐴 ↑m Ο‰)) β†’ (βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) β†’ ∩ ran 𝑓 ∈ ran 𝑓))
3938ralrimiva 3144 . 2 (𝐴 ∈ FinII β†’ βˆ€π‘“ ∈ (𝒫 𝐴 ↑m Ο‰)(βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) β†’ ∩ ran 𝑓 ∈ ran 𝑓))
40 fin23lem40.f . . 3 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
4140isfin3ds 10326 . 2 (𝐴 ∈ FinII β†’ (𝐴 ∈ 𝐹 ↔ βˆ€π‘“ ∈ (𝒫 𝐴 ↑m Ο‰)(βˆ€π‘ ∈ Ο‰ (π‘“β€˜suc 𝑏) βŠ† (π‘“β€˜π‘) β†’ ∩ ran 𝑓 ∈ ran 𝑓)))
4239, 41mpbird 256 1 (𝐴 ∈ FinII β†’ 𝐴 ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∨ wo 843   = wceq 1539   ∈ wcel 2104  {cab 2707   β‰  wne 2938  βˆ€wral 3059   βŠ† wss 3947   ⊊ wpss 3948  βˆ…c0 4321  π’« cpw 4601  βˆ© cint 4949   class class class wbr 5147   Po wpo 5585   Or wor 5586  β—‘ccnv 5674  dom cdm 5675  ran crn 5676  suc csuc 6365   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411   [⊊] crpss 7714  Ο‰com 7857   ↑m cmap 8822  FinIIcfin2 10276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-rpss 7715  df-om 7858  df-1st 7977  df-2nd 7978  df-map 8824  df-fin2 10283
This theorem is referenced by:  fin23  10386
  Copyright terms: Public domain W3C validator