Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psshepw Structured version   Visualization version   GIF version

Theorem psshepw 43752
Description: The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
psshepw [] hereditary 𝒫 𝐴

Proof of Theorem psshepw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfhe3 43739 . 2 ( [] hereditary 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴)))
2 sstr2 4015 . . . . 5 (𝑦𝑥 → (𝑥𝐴𝑦𝐴))
3 pssss 4121 . . . . 5 (𝑦𝑥𝑦𝑥)
42, 3syl11 33 . . . 4 (𝑥𝐴 → (𝑦𝑥𝑦𝐴))
54alrimiv 1926 . . 3 (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐴))
6 velpw 4627 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
7 vex 3492 . . . . . . 7 𝑥 ∈ V
8 vex 3492 . . . . . . 7 𝑦 ∈ V
97, 8brcnv 5907 . . . . . 6 (𝑥 [] 𝑦𝑦 [] 𝑥)
107brrpss 7763 . . . . . 6 (𝑦 [] 𝑥𝑦𝑥)
119, 10bitri 275 . . . . 5 (𝑥 [] 𝑦𝑦𝑥)
12 velpw 4627 . . . . 5 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
1311, 12imbi12i 350 . . . 4 ((𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴) ↔ (𝑦𝑥𝑦𝐴))
1413albii 1817 . . 3 (∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴) ↔ ∀𝑦(𝑦𝑥𝑦𝐴))
155, 6, 143imtr4i 292 . 2 (𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴))
161, 15mpgbir 1797 1 [] hereditary 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2108  wss 3976  wpss 3977  𝒫 cpw 4622   class class class wbr 5166  ccnv 5699   [] crpss 7759   hereditary whe 43736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-rpss 7760  df-he 43737
This theorem is referenced by:  sshepw  43753
  Copyright terms: Public domain W3C validator