| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psshepw | Structured version Visualization version GIF version | ||
| Description: The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
| Ref | Expression |
|---|---|
| psshepw | ⊢ ◡ [⊊] hereditary 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfhe3 43771 | . 2 ⊢ (◡ [⊊] hereditary 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴))) | |
| 2 | sstr2 3956 | . . . . 5 ⊢ (𝑦 ⊆ 𝑥 → (𝑥 ⊆ 𝐴 → 𝑦 ⊆ 𝐴)) | |
| 3 | pssss 4064 | . . . . 5 ⊢ (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝑥) | |
| 4 | 2, 3 | syl11 33 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 → (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
| 5 | 4 | alrimiv 1927 | . . 3 ⊢ (𝑥 ⊆ 𝐴 → ∀𝑦(𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
| 6 | velpw 4571 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 7 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 8 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | brcnv 5849 | . . . . . 6 ⊢ (𝑥◡ [⊊] 𝑦 ↔ 𝑦 [⊊] 𝑥) |
| 10 | 7 | brrpss 7705 | . . . . . 6 ⊢ (𝑦 [⊊] 𝑥 ↔ 𝑦 ⊊ 𝑥) |
| 11 | 9, 10 | bitri 275 | . . . . 5 ⊢ (𝑥◡ [⊊] 𝑦 ↔ 𝑦 ⊊ 𝑥) |
| 12 | velpw 4571 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) | |
| 13 | 11, 12 | imbi12i 350 | . . . 4 ⊢ ((𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴) ↔ (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
| 14 | 13 | albii 1819 | . . 3 ⊢ (∀𝑦(𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴) ↔ ∀𝑦(𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
| 15 | 5, 6, 14 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴)) |
| 16 | 1, 15 | mpgbir 1799 | 1 ⊢ ◡ [⊊] hereditary 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ⊆ wss 3917 ⊊ wpss 3918 𝒫 cpw 4566 class class class wbr 5110 ◡ccnv 5640 [⊊] crpss 7701 hereditary whe 43768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-rpss 7702 df-he 43769 |
| This theorem is referenced by: sshepw 43785 |
| Copyright terms: Public domain | W3C validator |