![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psshepw | Structured version Visualization version GIF version |
Description: The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
Ref | Expression |
---|---|
psshepw | ⊢ ◡ [⊊] hereditary 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfhe3 43781 | . 2 ⊢ (◡ [⊊] hereditary 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴))) | |
2 | sstr2 4005 | . . . . 5 ⊢ (𝑦 ⊆ 𝑥 → (𝑥 ⊆ 𝐴 → 𝑦 ⊆ 𝐴)) | |
3 | pssss 4111 | . . . . 5 ⊢ (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝑥) | |
4 | 2, 3 | syl11 33 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 → (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
5 | 4 | alrimiv 1927 | . . 3 ⊢ (𝑥 ⊆ 𝐴 → ∀𝑦(𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
6 | velpw 4613 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
7 | vex 3485 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | vex 3485 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brcnv 5900 | . . . . . 6 ⊢ (𝑥◡ [⊊] 𝑦 ↔ 𝑦 [⊊] 𝑥) |
10 | 7 | brrpss 7752 | . . . . . 6 ⊢ (𝑦 [⊊] 𝑥 ↔ 𝑦 ⊊ 𝑥) |
11 | 9, 10 | bitri 275 | . . . . 5 ⊢ (𝑥◡ [⊊] 𝑦 ↔ 𝑦 ⊊ 𝑥) |
12 | velpw 4613 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) | |
13 | 11, 12 | imbi12i 350 | . . . 4 ⊢ ((𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴) ↔ (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
14 | 13 | albii 1818 | . . 3 ⊢ (∀𝑦(𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴) ↔ ∀𝑦(𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
15 | 5, 6, 14 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴)) |
16 | 1, 15 | mpgbir 1798 | 1 ⊢ ◡ [⊊] hereditary 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2108 ⊆ wss 3966 ⊊ wpss 3967 𝒫 cpw 4608 class class class wbr 5151 ◡ccnv 5692 [⊊] crpss 7748 hereditary whe 43778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-rpss 7749 df-he 43779 |
This theorem is referenced by: sshepw 43795 |
Copyright terms: Public domain | W3C validator |