Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psshepw Structured version   Visualization version   GIF version

Theorem psshepw 41349
Description: The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
psshepw [] hereditary 𝒫 𝐴

Proof of Theorem psshepw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfhe3 41336 . 2 ( [] hereditary 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴)))
2 sstr2 3932 . . . . 5 (𝑦𝑥 → (𝑥𝐴𝑦𝐴))
3 pssss 4034 . . . . 5 (𝑦𝑥𝑦𝑥)
42, 3syl11 33 . . . 4 (𝑥𝐴 → (𝑦𝑥𝑦𝐴))
54alrimiv 1933 . . 3 (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐴))
6 velpw 4543 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
7 vex 3434 . . . . . . 7 𝑥 ∈ V
8 vex 3434 . . . . . . 7 𝑦 ∈ V
97, 8brcnv 5788 . . . . . 6 (𝑥 [] 𝑦𝑦 [] 𝑥)
107brrpss 7570 . . . . . 6 (𝑦 [] 𝑥𝑦𝑥)
119, 10bitri 274 . . . . 5 (𝑥 [] 𝑦𝑦𝑥)
12 velpw 4543 . . . . 5 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
1311, 12imbi12i 350 . . . 4 ((𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴) ↔ (𝑦𝑥𝑦𝐴))
1413albii 1825 . . 3 (∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴) ↔ ∀𝑦(𝑦𝑥𝑦𝐴))
155, 6, 143imtr4i 291 . 2 (𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴))
161, 15mpgbir 1805 1 [] hereditary 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wcel 2109  wss 3891  wpss 3892  𝒫 cpw 4538   class class class wbr 5078  ccnv 5587   [] crpss 7566   hereditary whe 41333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-11 2157  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-rpss 7567  df-he 41334
This theorem is referenced by:  sshepw  41350
  Copyright terms: Public domain W3C validator