Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psshepw Structured version   Visualization version   GIF version

Theorem psshepw 43784
Description: The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
psshepw [] hereditary 𝒫 𝐴

Proof of Theorem psshepw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfhe3 43771 . 2 ( [] hereditary 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴)))
2 sstr2 3956 . . . . 5 (𝑦𝑥 → (𝑥𝐴𝑦𝐴))
3 pssss 4064 . . . . 5 (𝑦𝑥𝑦𝑥)
42, 3syl11 33 . . . 4 (𝑥𝐴 → (𝑦𝑥𝑦𝐴))
54alrimiv 1927 . . 3 (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐴))
6 velpw 4571 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
7 vex 3454 . . . . . . 7 𝑥 ∈ V
8 vex 3454 . . . . . . 7 𝑦 ∈ V
97, 8brcnv 5849 . . . . . 6 (𝑥 [] 𝑦𝑦 [] 𝑥)
107brrpss 7705 . . . . . 6 (𝑦 [] 𝑥𝑦𝑥)
119, 10bitri 275 . . . . 5 (𝑥 [] 𝑦𝑦𝑥)
12 velpw 4571 . . . . 5 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
1311, 12imbi12i 350 . . . 4 ((𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴) ↔ (𝑦𝑥𝑦𝐴))
1413albii 1819 . . 3 (∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴) ↔ ∀𝑦(𝑦𝑥𝑦𝐴))
155, 6, 143imtr4i 292 . 2 (𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴))
161, 15mpgbir 1799 1 [] hereditary 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2109  wss 3917  wpss 3918  𝒫 cpw 4566   class class class wbr 5110  ccnv 5640   [] crpss 7701   hereditary whe 43768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-rpss 7702  df-he 43769
This theorem is referenced by:  sshepw  43785
  Copyright terms: Public domain W3C validator