Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psshepw Structured version   Visualization version   GIF version

Theorem psshepw 43794
Description: The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
psshepw [] hereditary 𝒫 𝐴

Proof of Theorem psshepw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfhe3 43781 . 2 ( [] hereditary 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴)))
2 sstr2 4005 . . . . 5 (𝑦𝑥 → (𝑥𝐴𝑦𝐴))
3 pssss 4111 . . . . 5 (𝑦𝑥𝑦𝑥)
42, 3syl11 33 . . . 4 (𝑥𝐴 → (𝑦𝑥𝑦𝐴))
54alrimiv 1927 . . 3 (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐴))
6 velpw 4613 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
7 vex 3485 . . . . . . 7 𝑥 ∈ V
8 vex 3485 . . . . . . 7 𝑦 ∈ V
97, 8brcnv 5900 . . . . . 6 (𝑥 [] 𝑦𝑦 [] 𝑥)
107brrpss 7752 . . . . . 6 (𝑦 [] 𝑥𝑦𝑥)
119, 10bitri 275 . . . . 5 (𝑥 [] 𝑦𝑦𝑥)
12 velpw 4613 . . . . 5 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
1311, 12imbi12i 350 . . . 4 ((𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴) ↔ (𝑦𝑥𝑦𝐴))
1413albii 1818 . . 3 (∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴) ↔ ∀𝑦(𝑦𝑥𝑦𝐴))
155, 6, 143imtr4i 292 . 2 (𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥 [] 𝑦𝑦 ∈ 𝒫 𝐴))
161, 15mpgbir 1798 1 [] hereditary 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wcel 2108  wss 3966  wpss 3967  𝒫 cpw 4608   class class class wbr 5151  ccnv 5692   [] crpss 7748   hereditary whe 43778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-xp 5699  df-rel 5700  df-cnv 5701  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-rpss 7749  df-he 43779
This theorem is referenced by:  sshepw  43795
  Copyright terms: Public domain W3C validator