| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psshepw | Structured version Visualization version GIF version | ||
| Description: The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
| Ref | Expression |
|---|---|
| psshepw | ⊢ ◡ [⊊] hereditary 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfhe3 43750 | . 2 ⊢ (◡ [⊊] hereditary 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴))) | |
| 2 | sstr2 3970 | . . . . 5 ⊢ (𝑦 ⊆ 𝑥 → (𝑥 ⊆ 𝐴 → 𝑦 ⊆ 𝐴)) | |
| 3 | pssss 4078 | . . . . 5 ⊢ (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝑥) | |
| 4 | 2, 3 | syl11 33 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 → (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
| 5 | 4 | alrimiv 1926 | . . 3 ⊢ (𝑥 ⊆ 𝐴 → ∀𝑦(𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
| 6 | velpw 4585 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 7 | vex 3467 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 8 | vex 3467 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | brcnv 5873 | . . . . . 6 ⊢ (𝑥◡ [⊊] 𝑦 ↔ 𝑦 [⊊] 𝑥) |
| 10 | 7 | brrpss 7728 | . . . . . 6 ⊢ (𝑦 [⊊] 𝑥 ↔ 𝑦 ⊊ 𝑥) |
| 11 | 9, 10 | bitri 275 | . . . . 5 ⊢ (𝑥◡ [⊊] 𝑦 ↔ 𝑦 ⊊ 𝑥) |
| 12 | velpw 4585 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) | |
| 13 | 11, 12 | imbi12i 350 | . . . 4 ⊢ ((𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴) ↔ (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
| 14 | 13 | albii 1818 | . . 3 ⊢ (∀𝑦(𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴) ↔ ∀𝑦(𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
| 15 | 5, 6, 14 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴)) |
| 16 | 1, 15 | mpgbir 1798 | 1 ⊢ ◡ [⊊] hereditary 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2107 ⊆ wss 3931 ⊊ wpss 3932 𝒫 cpw 4580 class class class wbr 5123 ◡ccnv 5664 [⊊] crpss 7724 hereditary whe 43747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-rpss 7725 df-he 43748 |
| This theorem is referenced by: sshepw 43764 |
| Copyright terms: Public domain | W3C validator |