MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorng Structured version   Visualization version   GIF version

Theorem zorng 10457
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of [Enderton] p. 151. This version of zorn 10460 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 12-Aug-2004.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorng ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem zorng
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 risset 3212 . . . . . 6 ( 𝑧𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑧)
2 eqimss2 4006 . . . . . . . . 9 (𝑥 = 𝑧 𝑧𝑥)
3 unissb 4903 . . . . . . . . 9 ( 𝑧𝑥 ↔ ∀𝑢𝑧 𝑢𝑥)
42, 3sylib 218 . . . . . . . 8 (𝑥 = 𝑧 → ∀𝑢𝑧 𝑢𝑥)
5 vex 3451 . . . . . . . . . . . 12 𝑥 ∈ V
65brrpss 7702 . . . . . . . . . . 11 (𝑢 [] 𝑥𝑢𝑥)
76orbi1i 913 . . . . . . . . . 10 ((𝑢 [] 𝑥𝑢 = 𝑥) ↔ (𝑢𝑥𝑢 = 𝑥))
8 sspss 4065 . . . . . . . . . 10 (𝑢𝑥 ↔ (𝑢𝑥𝑢 = 𝑥))
97, 8bitr4i 278 . . . . . . . . 9 ((𝑢 [] 𝑥𝑢 = 𝑥) ↔ 𝑢𝑥)
109ralbii 3075 . . . . . . . 8 (∀𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥) ↔ ∀𝑢𝑧 𝑢𝑥)
114, 10sylibr 234 . . . . . . 7 (𝑥 = 𝑧 → ∀𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))
1211reximi 3067 . . . . . 6 (∃𝑥𝐴 𝑥 = 𝑧 → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))
131, 12sylbi 217 . . . . 5 ( 𝑧𝐴 → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))
1413imim2i 16 . . . 4 (((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴) → ((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥)))
1514alimi 1811 . . 3 (∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴) → ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥)))
16 porpss 7703 . . . 4 [] Po 𝐴
17 zorn2g 10456 . . . 4 ((𝐴 ∈ dom card ∧ [] Po 𝐴 ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦)
1816, 17mp3an2 1451 . . 3 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦)
1915, 18sylan2 593 . 2 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦)
20 vex 3451 . . . . . 6 𝑦 ∈ V
2120brrpss 7702 . . . . 5 (𝑥 [] 𝑦𝑥𝑦)
2221notbii 320 . . . 4 𝑥 [] 𝑦 ↔ ¬ 𝑥𝑦)
2322ralbii 3075 . . 3 (∀𝑦𝐴 ¬ 𝑥 [] 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥𝑦)
2423rexbii 3076 . 2 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
2519, 24sylib 218 1 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914  wpss 3915   cuni 4871   class class class wbr 5107   Po wpo 5544   Or wor 5545  dom cdm 5638   [] crpss 7698  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-rpss 7699  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-en 8919  df-card 9892
This theorem is referenced by:  zornn0g  10458  zorn  10460
  Copyright terms: Public domain W3C validator