MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorng Structured version   Visualization version   GIF version

Theorem zorng 10417
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of [Enderton] p. 151. This version of zorn 10420 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 12-Aug-2004.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorng ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem zorng
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 risset 3204 . . . . . 6 ( 𝑧𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑧)
2 eqimss2 3997 . . . . . . . . 9 (𝑥 = 𝑧 𝑧𝑥)
3 unissb 4893 . . . . . . . . 9 ( 𝑧𝑥 ↔ ∀𝑢𝑧 𝑢𝑥)
42, 3sylib 218 . . . . . . . 8 (𝑥 = 𝑧 → ∀𝑢𝑧 𝑢𝑥)
5 vex 3442 . . . . . . . . . . . 12 𝑥 ∈ V
65brrpss 7666 . . . . . . . . . . 11 (𝑢 [] 𝑥𝑢𝑥)
76orbi1i 913 . . . . . . . . . 10 ((𝑢 [] 𝑥𝑢 = 𝑥) ↔ (𝑢𝑥𝑢 = 𝑥))
8 sspss 4055 . . . . . . . . . 10 (𝑢𝑥 ↔ (𝑢𝑥𝑢 = 𝑥))
97, 8bitr4i 278 . . . . . . . . 9 ((𝑢 [] 𝑥𝑢 = 𝑥) ↔ 𝑢𝑥)
109ralbii 3075 . . . . . . . 8 (∀𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥) ↔ ∀𝑢𝑧 𝑢𝑥)
114, 10sylibr 234 . . . . . . 7 (𝑥 = 𝑧 → ∀𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))
1211reximi 3067 . . . . . 6 (∃𝑥𝐴 𝑥 = 𝑧 → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))
131, 12sylbi 217 . . . . 5 ( 𝑧𝐴 → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))
1413imim2i 16 . . . 4 (((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴) → ((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥)))
1514alimi 1811 . . 3 (∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴) → ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥)))
16 porpss 7667 . . . 4 [] Po 𝐴
17 zorn2g 10416 . . . 4 ((𝐴 ∈ dom card ∧ [] Po 𝐴 ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦)
1816, 17mp3an2 1451 . . 3 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦)
1915, 18sylan2 593 . 2 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦)
20 vex 3442 . . . . . 6 𝑦 ∈ V
2120brrpss 7666 . . . . 5 (𝑥 [] 𝑦𝑥𝑦)
2221notbii 320 . . . 4 𝑥 [] 𝑦 ↔ ¬ 𝑥𝑦)
2322ralbii 3075 . . 3 (∀𝑦𝐴 ¬ 𝑥 [] 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥𝑦)
2423rexbii 3076 . 2 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
2519, 24sylib 218 1 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3905  wpss 3906   cuni 4861   class class class wbr 5095   Po wpo 5529   Or wor 5530  dom cdm 5623   [] crpss 7662  cardccrd 9850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-rpss 7663  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-en 8880  df-card 9854
This theorem is referenced by:  zornn0g  10418  zorn  10420
  Copyright terms: Public domain W3C validator