![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zorng | Structured version Visualization version GIF version |
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of [Enderton] p. 151. This version of zorn 10498 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 12-Aug-2004.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
zorng | ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3230 | . . . . . 6 ⊢ (∪ 𝑧 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝑧) | |
2 | eqimss2 4040 | . . . . . . . . 9 ⊢ (𝑥 = ∪ 𝑧 → ∪ 𝑧 ⊆ 𝑥) | |
3 | unissb 4942 | . . . . . . . . 9 ⊢ (∪ 𝑧 ⊆ 𝑥 ↔ ∀𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥) | |
4 | 2, 3 | sylib 217 | . . . . . . . 8 ⊢ (𝑥 = ∪ 𝑧 → ∀𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥) |
5 | vex 3478 | . . . . . . . . . . . 12 ⊢ 𝑥 ∈ V | |
6 | 5 | brrpss 7712 | . . . . . . . . . . 11 ⊢ (𝑢 [⊊] 𝑥 ↔ 𝑢 ⊊ 𝑥) |
7 | 6 | orbi1i 912 | . . . . . . . . . 10 ⊢ ((𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥) ↔ (𝑢 ⊊ 𝑥 ∨ 𝑢 = 𝑥)) |
8 | sspss 4098 | . . . . . . . . . 10 ⊢ (𝑢 ⊆ 𝑥 ↔ (𝑢 ⊊ 𝑥 ∨ 𝑢 = 𝑥)) | |
9 | 7, 8 | bitr4i 277 | . . . . . . . . 9 ⊢ ((𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥) ↔ 𝑢 ⊆ 𝑥) |
10 | 9 | ralbii 3093 | . . . . . . . 8 ⊢ (∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥) ↔ ∀𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥) |
11 | 4, 10 | sylibr 233 | . . . . . . 7 ⊢ (𝑥 = ∪ 𝑧 → ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥)) |
12 | 11 | reximi 3084 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝑧 → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥)) |
13 | 1, 12 | sylbi 216 | . . . . 5 ⊢ (∪ 𝑧 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥)) |
14 | 13 | imim2i 16 | . . . 4 ⊢ (((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴) → ((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) |
15 | 14 | alimi 1813 | . . 3 ⊢ (∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴) → ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) |
16 | porpss 7713 | . . . 4 ⊢ [⊊] Po 𝐴 | |
17 | zorn2g 10494 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ [⊊] Po 𝐴 ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦) | |
18 | 16, 17 | mp3an2 1449 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦) |
19 | 15, 18 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦) |
20 | vex 3478 | . . . . . 6 ⊢ 𝑦 ∈ V | |
21 | 20 | brrpss 7712 | . . . . 5 ⊢ (𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦) |
22 | 21 | notbii 319 | . . . 4 ⊢ (¬ 𝑥 [⊊] 𝑦 ↔ ¬ 𝑥 ⊊ 𝑦) |
23 | 22 | ralbii 3093 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
24 | 23 | rexbii 3094 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
25 | 19, 24 | sylib 217 | 1 ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 ∀wal 1539 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ⊆ wss 3947 ⊊ wpss 3948 ∪ cuni 4907 class class class wbr 5147 Po wpo 5585 Or wor 5586 dom cdm 5675 [⊊] crpss 7708 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-rpss 7709 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-en 8936 df-card 9930 |
This theorem is referenced by: zornn0g 10496 zorn 10498 |
Copyright terms: Public domain | W3C validator |