Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zorng | Structured version Visualization version GIF version |
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of [Enderton] p. 151. This version of zorn 10356 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 12-Aug-2004.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
zorng | ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3217 | . . . . . 6 ⊢ (∪ 𝑧 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝑧) | |
2 | eqimss2 3988 | . . . . . . . . 9 ⊢ (𝑥 = ∪ 𝑧 → ∪ 𝑧 ⊆ 𝑥) | |
3 | unissb 4886 | . . . . . . . . 9 ⊢ (∪ 𝑧 ⊆ 𝑥 ↔ ∀𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥) | |
4 | 2, 3 | sylib 217 | . . . . . . . 8 ⊢ (𝑥 = ∪ 𝑧 → ∀𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥) |
5 | vex 3445 | . . . . . . . . . . . 12 ⊢ 𝑥 ∈ V | |
6 | 5 | brrpss 7633 | . . . . . . . . . . 11 ⊢ (𝑢 [⊊] 𝑥 ↔ 𝑢 ⊊ 𝑥) |
7 | 6 | orbi1i 911 | . . . . . . . . . 10 ⊢ ((𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥) ↔ (𝑢 ⊊ 𝑥 ∨ 𝑢 = 𝑥)) |
8 | sspss 4045 | . . . . . . . . . 10 ⊢ (𝑢 ⊆ 𝑥 ↔ (𝑢 ⊊ 𝑥 ∨ 𝑢 = 𝑥)) | |
9 | 7, 8 | bitr4i 277 | . . . . . . . . 9 ⊢ ((𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥) ↔ 𝑢 ⊆ 𝑥) |
10 | 9 | ralbii 3092 | . . . . . . . 8 ⊢ (∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥) ↔ ∀𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥) |
11 | 4, 10 | sylibr 233 | . . . . . . 7 ⊢ (𝑥 = ∪ 𝑧 → ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥)) |
12 | 11 | reximi 3083 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝑧 → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥)) |
13 | 1, 12 | sylbi 216 | . . . . 5 ⊢ (∪ 𝑧 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥)) |
14 | 13 | imim2i 16 | . . . 4 ⊢ (((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴) → ((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) |
15 | 14 | alimi 1812 | . . 3 ⊢ (∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴) → ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) |
16 | porpss 7634 | . . . 4 ⊢ [⊊] Po 𝐴 | |
17 | zorn2g 10352 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ [⊊] Po 𝐴 ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦) | |
18 | 16, 17 | mp3an2 1448 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦) |
19 | 15, 18 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦) |
20 | vex 3445 | . . . . . 6 ⊢ 𝑦 ∈ V | |
21 | 20 | brrpss 7633 | . . . . 5 ⊢ (𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦) |
22 | 21 | notbii 319 | . . . 4 ⊢ (¬ 𝑥 [⊊] 𝑦 ↔ ¬ 𝑥 ⊊ 𝑦) |
23 | 22 | ralbii 3092 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
24 | 23 | rexbii 3093 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
25 | 19, 24 | sylib 217 | 1 ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 ⊆ wss 3897 ⊊ wpss 3898 ∪ cuni 4851 class class class wbr 5089 Po wpo 5524 Or wor 5525 dom cdm 5614 [⊊] crpss 7629 cardccrd 9784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-rpss 7630 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-en 8797 df-card 9788 |
This theorem is referenced by: zornn0g 10354 zorn 10356 |
Copyright terms: Public domain | W3C validator |