MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorng Structured version   Visualization version   GIF version

Theorem zorng 10260
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of [Enderton] p. 151. This version of zorn 10263 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 12-Aug-2004.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorng ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem zorng
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 risset 3194 . . . . . 6 ( 𝑧𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑧)
2 eqimss2 3978 . . . . . . . . 9 (𝑥 = 𝑧 𝑧𝑥)
3 unissb 4873 . . . . . . . . 9 ( 𝑧𝑥 ↔ ∀𝑢𝑧 𝑢𝑥)
42, 3sylib 217 . . . . . . . 8 (𝑥 = 𝑧 → ∀𝑢𝑧 𝑢𝑥)
5 vex 3436 . . . . . . . . . . . 12 𝑥 ∈ V
65brrpss 7579 . . . . . . . . . . 11 (𝑢 [] 𝑥𝑢𝑥)
76orbi1i 911 . . . . . . . . . 10 ((𝑢 [] 𝑥𝑢 = 𝑥) ↔ (𝑢𝑥𝑢 = 𝑥))
8 sspss 4034 . . . . . . . . . 10 (𝑢𝑥 ↔ (𝑢𝑥𝑢 = 𝑥))
97, 8bitr4i 277 . . . . . . . . 9 ((𝑢 [] 𝑥𝑢 = 𝑥) ↔ 𝑢𝑥)
109ralbii 3092 . . . . . . . 8 (∀𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥) ↔ ∀𝑢𝑧 𝑢𝑥)
114, 10sylibr 233 . . . . . . 7 (𝑥 = 𝑧 → ∀𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))
1211reximi 3178 . . . . . 6 (∃𝑥𝐴 𝑥 = 𝑧 → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))
131, 12sylbi 216 . . . . 5 ( 𝑧𝐴 → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))
1413imim2i 16 . . . 4 (((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴) → ((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥)))
1514alimi 1814 . . 3 (∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴) → ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥)))
16 porpss 7580 . . . 4 [] Po 𝐴
17 zorn2g 10259 . . . 4 ((𝐴 ∈ dom card ∧ [] Po 𝐴 ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦)
1816, 17mp3an2 1448 . . 3 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦)
1915, 18sylan2 593 . 2 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦)
20 vex 3436 . . . . . 6 𝑦 ∈ V
2120brrpss 7579 . . . . 5 (𝑥 [] 𝑦𝑥𝑦)
2221notbii 320 . . . 4 𝑥 [] 𝑦 ↔ ¬ 𝑥𝑦)
2322ralbii 3092 . . 3 (∀𝑦𝐴 ¬ 𝑥 [] 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥𝑦)
2423rexbii 3181 . 2 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
2519, 24sylib 217 1 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  wal 1537   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  wpss 3888   cuni 4839   class class class wbr 5074   Po wpo 5501   Or wor 5502  dom cdm 5589   [] crpss 7575  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-rpss 7576  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-en 8734  df-card 9697
This theorem is referenced by:  zornn0g  10261  zorn  10263
  Copyright terms: Public domain W3C validator