|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > zorng | Structured version Visualization version GIF version | ||
| Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of [Enderton] p. 151. This version of zorn 10547 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 12-Aug-2004.) (Revised by Mario Carneiro, 9-May-2015.) | 
| Ref | Expression | 
|---|---|
| zorng | ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | risset 3233 | . . . . . 6 ⊢ (∪ 𝑧 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝑧) | |
| 2 | eqimss2 4043 | . . . . . . . . 9 ⊢ (𝑥 = ∪ 𝑧 → ∪ 𝑧 ⊆ 𝑥) | |
| 3 | unissb 4939 | . . . . . . . . 9 ⊢ (∪ 𝑧 ⊆ 𝑥 ↔ ∀𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥) | |
| 4 | 2, 3 | sylib 218 | . . . . . . . 8 ⊢ (𝑥 = ∪ 𝑧 → ∀𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥) | 
| 5 | vex 3484 | . . . . . . . . . . . 12 ⊢ 𝑥 ∈ V | |
| 6 | 5 | brrpss 7746 | . . . . . . . . . . 11 ⊢ (𝑢 [⊊] 𝑥 ↔ 𝑢 ⊊ 𝑥) | 
| 7 | 6 | orbi1i 914 | . . . . . . . . . 10 ⊢ ((𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥) ↔ (𝑢 ⊊ 𝑥 ∨ 𝑢 = 𝑥)) | 
| 8 | sspss 4102 | . . . . . . . . . 10 ⊢ (𝑢 ⊆ 𝑥 ↔ (𝑢 ⊊ 𝑥 ∨ 𝑢 = 𝑥)) | |
| 9 | 7, 8 | bitr4i 278 | . . . . . . . . 9 ⊢ ((𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥) ↔ 𝑢 ⊆ 𝑥) | 
| 10 | 9 | ralbii 3093 | . . . . . . . 8 ⊢ (∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥) ↔ ∀𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥) | 
| 11 | 4, 10 | sylibr 234 | . . . . . . 7 ⊢ (𝑥 = ∪ 𝑧 → ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥)) | 
| 12 | 11 | reximi 3084 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝑧 → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥)) | 
| 13 | 1, 12 | sylbi 217 | . . . . 5 ⊢ (∪ 𝑧 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥)) | 
| 14 | 13 | imim2i 16 | . . . 4 ⊢ (((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴) → ((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) | 
| 15 | 14 | alimi 1811 | . . 3 ⊢ (∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴) → ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) | 
| 16 | porpss 7747 | . . . 4 ⊢ [⊊] Po 𝐴 | |
| 17 | zorn2g 10543 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ [⊊] Po 𝐴 ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦) | |
| 18 | 16, 17 | mp3an2 1451 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦) | 
| 19 | 15, 18 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦) | 
| 20 | vex 3484 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 21 | 20 | brrpss 7746 | . . . . 5 ⊢ (𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦) | 
| 22 | 21 | notbii 320 | . . . 4 ⊢ (¬ 𝑥 [⊊] 𝑦 ↔ ¬ 𝑥 ⊊ 𝑦) | 
| 23 | 22 | ralbii 3093 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | 
| 24 | 23 | rexbii 3094 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | 
| 25 | 19, 24 | sylib 218 | 1 ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 ⊊ wpss 3952 ∪ cuni 4907 class class class wbr 5143 Po wpo 5590 Or wor 5591 dom cdm 5685 [⊊] crpss 7742 cardccrd 9975 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-rpss 7743 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-en 8986 df-card 9979 | 
| This theorem is referenced by: zornn0g 10545 zorn 10547 | 
| Copyright terms: Public domain | W3C validator |