MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorng Structured version   Visualization version   GIF version

Theorem zorng 9761
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of [Enderton] p. 151. This version of zorn 9764 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 12-Aug-2004.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorng ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem zorng
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 risset 3228 . . . . . 6 ( 𝑧𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑧)
2 eqimss2 3940 . . . . . . . . 9 (𝑥 = 𝑧 𝑧𝑥)
3 unissb 4770 . . . . . . . . 9 ( 𝑧𝑥 ↔ ∀𝑢𝑧 𝑢𝑥)
42, 3sylib 219 . . . . . . . 8 (𝑥 = 𝑧 → ∀𝑢𝑧 𝑢𝑥)
5 vex 3435 . . . . . . . . . . . 12 𝑥 ∈ V
65brrpss 7301 . . . . . . . . . . 11 (𝑢 [] 𝑥𝑢𝑥)
76orbi1i 906 . . . . . . . . . 10 ((𝑢 [] 𝑥𝑢 = 𝑥) ↔ (𝑢𝑥𝑢 = 𝑥))
8 sspss 3992 . . . . . . . . . 10 (𝑢𝑥 ↔ (𝑢𝑥𝑢 = 𝑥))
97, 8bitr4i 279 . . . . . . . . 9 ((𝑢 [] 𝑥𝑢 = 𝑥) ↔ 𝑢𝑥)
109ralbii 3130 . . . . . . . 8 (∀𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥) ↔ ∀𝑢𝑧 𝑢𝑥)
114, 10sylibr 235 . . . . . . 7 (𝑥 = 𝑧 → ∀𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))
1211reximi 3205 . . . . . 6 (∃𝑥𝐴 𝑥 = 𝑧 → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))
131, 12sylbi 218 . . . . 5 ( 𝑧𝐴 → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))
1413imim2i 16 . . . 4 (((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴) → ((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥)))
1514alimi 1791 . . 3 (∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴) → ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥)))
16 porpss 7302 . . . 4 [] Po 𝐴
17 zorn2g 9760 . . . 4 ((𝐴 ∈ dom card ∧ [] Po 𝐴 ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦)
1816, 17mp3an2 1439 . . 3 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → ∃𝑥𝐴𝑢𝑧 (𝑢 [] 𝑥𝑢 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦)
1915, 18sylan2 592 . 2 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦)
20 vex 3435 . . . . . 6 𝑦 ∈ V
2120brrpss 7301 . . . . 5 (𝑥 [] 𝑦𝑥𝑦)
2221notbii 321 . . . 4 𝑥 [] 𝑦 ↔ ¬ 𝑥𝑦)
2322ralbii 3130 . . 3 (∀𝑦𝐴 ¬ 𝑥 [] 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥𝑦)
2423rexbii 3209 . 2 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
2519, 24sylib 219 1 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 842  wal 1518   = wceq 1520  wcel 2079  wral 3103  wrex 3104  wss 3854  wpss 3855   cuni 4739   class class class wbr 4956   Po wpo 5352   Or wor 5353  dom cdm 5435   [] crpss 7297  cardccrd 9199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-rpss 7298  df-wrecs 7789  df-recs 7851  df-en 8348  df-card 9203
This theorem is referenced by:  zornn0g  9762  zorn  9764
  Copyright terms: Public domain W3C validator