![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zorng | Structured version Visualization version GIF version |
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of [Enderton] p. 151. This version of zorn 10499 avoids the Axiom of Choice by assuming that 𝐴 is well-orderable. (Contributed by NM, 12-Aug-2004.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
zorng | ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3222 | . . . . . 6 ⊢ (∪ 𝑧 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝑧) | |
2 | eqimss2 4034 | . . . . . . . . 9 ⊢ (𝑥 = ∪ 𝑧 → ∪ 𝑧 ⊆ 𝑥) | |
3 | unissb 4934 | . . . . . . . . 9 ⊢ (∪ 𝑧 ⊆ 𝑥 ↔ ∀𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥) | |
4 | 2, 3 | sylib 217 | . . . . . . . 8 ⊢ (𝑥 = ∪ 𝑧 → ∀𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥) |
5 | vex 3470 | . . . . . . . . . . . 12 ⊢ 𝑥 ∈ V | |
6 | 5 | brrpss 7710 | . . . . . . . . . . 11 ⊢ (𝑢 [⊊] 𝑥 ↔ 𝑢 ⊊ 𝑥) |
7 | 6 | orbi1i 910 | . . . . . . . . . 10 ⊢ ((𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥) ↔ (𝑢 ⊊ 𝑥 ∨ 𝑢 = 𝑥)) |
8 | sspss 4092 | . . . . . . . . . 10 ⊢ (𝑢 ⊆ 𝑥 ↔ (𝑢 ⊊ 𝑥 ∨ 𝑢 = 𝑥)) | |
9 | 7, 8 | bitr4i 278 | . . . . . . . . 9 ⊢ ((𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥) ↔ 𝑢 ⊆ 𝑥) |
10 | 9 | ralbii 3085 | . . . . . . . 8 ⊢ (∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥) ↔ ∀𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥) |
11 | 4, 10 | sylibr 233 | . . . . . . 7 ⊢ (𝑥 = ∪ 𝑧 → ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥)) |
12 | 11 | reximi 3076 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝑧 → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥)) |
13 | 1, 12 | sylbi 216 | . . . . 5 ⊢ (∪ 𝑧 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥)) |
14 | 13 | imim2i 16 | . . . 4 ⊢ (((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴) → ((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) |
15 | 14 | alimi 1805 | . . 3 ⊢ (∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴) → ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) |
16 | porpss 7711 | . . . 4 ⊢ [⊊] Po 𝐴 | |
17 | zorn2g 10495 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ [⊊] Po 𝐴 ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦) | |
18 | 16, 17 | mp3an2 1445 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∃𝑥 ∈ 𝐴 ∀𝑢 ∈ 𝑧 (𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦) |
19 | 15, 18 | sylan2 592 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦) |
20 | vex 3470 | . . . . . 6 ⊢ 𝑦 ∈ V | |
21 | 20 | brrpss 7710 | . . . . 5 ⊢ (𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦) |
22 | 21 | notbii 320 | . . . 4 ⊢ (¬ 𝑥 [⊊] 𝑦 ↔ ¬ 𝑥 ⊊ 𝑦) |
23 | 22 | ralbii 3085 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
24 | 23 | rexbii 3086 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
25 | 19, 24 | sylib 217 | 1 ⊢ ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 844 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 ⊆ wss 3941 ⊊ wpss 3942 ∪ cuni 4900 class class class wbr 5139 Po wpo 5577 Or wor 5578 dom cdm 5667 [⊊] crpss 7706 cardccrd 9927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-rpss 7707 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-en 8937 df-card 9931 |
This theorem is referenced by: zornn0g 10497 zorn 10499 |
Copyright terms: Public domain | W3C validator |