MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltxrlt Structured version   Visualization version   GIF version

Theorem ltxrlt 11184
Description: The standard less-than < and the extended real less-than < are identical when restricted to the non-extended reals . (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltxrlt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))

Proof of Theorem ltxrlt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brun 5155 . . . . 5 (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵))
2 brxp 5680 . . . . . . 7 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ (𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}))
3 elsni 4602 . . . . . . . 8 (𝐵 ∈ {+∞} → 𝐵 = +∞)
4 pnfnre 11155 . . . . . . . . . 10 +∞ ∉ ℝ
54neli 3050 . . . . . . . . 9 ¬ +∞ ∈ ℝ
6 simpr 486 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
7 eleq1 2826 . . . . . . . . . 10 (𝐵 = +∞ → (𝐵 ∈ ℝ ↔ +∞ ∈ ℝ))
86, 7imbitrid 243 . . . . . . . . 9 (𝐵 = +∞ → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → +∞ ∈ ℝ))
95, 8mtoi 198 . . . . . . . 8 (𝐵 = +∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
103, 9syl 17 . . . . . . 7 (𝐵 ∈ {+∞} → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
112, 10simplbiim 506 . . . . . 6 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
12 brxp 5680 . . . . . . 7 (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ))
13 elsni 4602 . . . . . . . . 9 (𝐴 ∈ {-∞} → 𝐴 = -∞)
14 mnfnre 11157 . . . . . . . . . . 11 -∞ ∉ ℝ
1514neli 3050 . . . . . . . . . 10 ¬ -∞ ∈ ℝ
16 simpl 484 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
17 eleq1 2826 . . . . . . . . . . 11 (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ))
1816, 17imbitrid 243 . . . . . . . . . 10 (𝐴 = -∞ → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -∞ ∈ ℝ))
1915, 18mtoi 198 . . . . . . . . 9 (𝐴 = -∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2013, 19syl 17 . . . . . . . 8 (𝐴 ∈ {-∞} → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2120adantr 482 . . . . . . 7 ((𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2212, 21sylbi 216 . . . . . 6 (𝐴({-∞} × ℝ)𝐵 → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2311, 22jaoi 856 . . . . 5 ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
241, 23sylbi 216 . . . 4 (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2524con2i 139 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵)
26 df-ltxr 11153 . . . . . . 7 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
2726equncomi 4114 . . . . . 6 < = ((((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)})
2827breqi 5110 . . . . 5 (𝐴 < 𝐵𝐴((((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)})𝐵)
29 brun 5155 . . . . 5 (𝐴((((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)})𝐵 ↔ (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵))
30 df-or 847 . . . . 5 ((𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵) ↔ (¬ 𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵))
3128, 29, 303bitri 297 . . . 4 (𝐴 < 𝐵 ↔ (¬ 𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵))
32 biimt 361 . . . 4 𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ (¬ 𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵)))
3331, 32bitr4id 290 . . 3 𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 → (𝐴 < 𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵))
3425, 33syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵))
35 breq12 5109 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 < 𝑦𝐴 < 𝐵))
36 df-3an 1090 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦))
3736opabbii 5171 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)}
3835, 37brab2a 5724 . . 3 (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵))
3938baibr 538 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵))
4034, 39bitr4d 282 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  cun 3907  {csn 4585   class class class wbr 5104  {copab 5166   × cxp 5630  cr 11009   < cltrr 11014  +∞cpnf 11145  -∞cmnf 11146   < clt 11148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-resscn 11067
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-br 5105  df-opab 5167  df-mpt 5188  df-id 5530  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-er 8607  df-en 8843  df-dom 8844  df-sdom 8845  df-pnf 11150  df-mnf 11151  df-ltxr 11153
This theorem is referenced by:  axlttri  11185  axlttrn  11186  axltadd  11187  axmulgt0  11188  axsup  11189
  Copyright terms: Public domain W3C validator