MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltxrlt Structured version   Visualization version   GIF version

Theorem ltxrlt 10734
Description: The standard less-than < and the extended real less-than < are identical when restricted to the non-extended reals . (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltxrlt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))

Proof of Theorem ltxrlt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brun 5076 . . . . 5 (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵))
2 brxp 5563 . . . . . . 7 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ (𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}))
3 elsni 4532 . . . . . . . 8 (𝐵 ∈ {+∞} → 𝐵 = +∞)
4 pnfnre 10705 . . . . . . . . . 10 +∞ ∉ ℝ
54neli 3055 . . . . . . . . 9 ¬ +∞ ∈ ℝ
6 simpr 489 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
7 eleq1 2838 . . . . . . . . . 10 (𝐵 = +∞ → (𝐵 ∈ ℝ ↔ +∞ ∈ ℝ))
86, 7syl5ib 247 . . . . . . . . 9 (𝐵 = +∞ → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → +∞ ∈ ℝ))
95, 8mtoi 202 . . . . . . . 8 (𝐵 = +∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
103, 9syl 17 . . . . . . 7 (𝐵 ∈ {+∞} → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
112, 10simplbiim 509 . . . . . 6 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
12 brxp 5563 . . . . . . 7 (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ))
13 elsni 4532 . . . . . . . . 9 (𝐴 ∈ {-∞} → 𝐴 = -∞)
14 mnfnre 10707 . . . . . . . . . . 11 -∞ ∉ ℝ
1514neli 3055 . . . . . . . . . 10 ¬ -∞ ∈ ℝ
16 simpl 487 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
17 eleq1 2838 . . . . . . . . . . 11 (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ))
1816, 17syl5ib 247 . . . . . . . . . 10 (𝐴 = -∞ → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -∞ ∈ ℝ))
1915, 18mtoi 202 . . . . . . . . 9 (𝐴 = -∞ → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2013, 19syl 17 . . . . . . . 8 (𝐴 ∈ {-∞} → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2120adantr 485 . . . . . . 7 ((𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2212, 21sylbi 220 . . . . . 6 (𝐴({-∞} × ℝ)𝐵 → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2311, 22jaoi 855 . . . . 5 ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
241, 23sylbi 220 . . . 4 (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 → ¬ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2524con2i 141 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵)
26 df-ltxr 10703 . . . . . . 7 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
2726equncomi 4056 . . . . . 6 < = ((((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)})
2827breqi 5031 . . . . 5 (𝐴 < 𝐵𝐴((((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)})𝐵)
29 brun 5076 . . . . 5 (𝐴((((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)) ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)})𝐵 ↔ (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵))
30 df-or 846 . . . . 5 ((𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵) ↔ (¬ 𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵))
3128, 29, 303bitri 301 . . . 4 (𝐴 < 𝐵 ↔ (¬ 𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵))
32 biimt 365 . . . 4 𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ (¬ 𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵)))
3331, 32bitr4id 294 . . 3 𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 → (𝐴 < 𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵))
3425, 33syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵))
35 breq12 5030 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 < 𝑦𝐴 < 𝐵))
36 df-3an 1087 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦))
3736opabbii 5092 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)}
3835, 37brab2a 5606 . . 3 (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵))
3938baibr 541 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵))
4034, 39bitr4d 285 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  wo 845  w3a 1085   = wceq 1539  wcel 2112  cun 3852  {csn 4515   class class class wbr 5025  {copab 5087   × cxp 5515  cr 10559   < cltrr 10564  +∞cpnf 10695  -∞cmnf 10696   < clt 10698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-resscn 10617
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-ltxr 10703
This theorem is referenced by:  axlttri  10735  axlttrn  10736  axltadd  10737  axmulgt0  10738  axsup  10739
  Copyright terms: Public domain W3C validator