Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > btwncolinear5 | Structured version Visualization version GIF version |
Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
btwncolinear5 | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐶 Colinear 〈𝐴, 𝐵〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwncolinear1 34513 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐴 Colinear 〈𝐵, 𝐶〉)) | |
2 | colinearperm4 34509 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐶 Colinear 〈𝐴, 𝐵〉)) | |
3 | 1, 2 | sylibd 238 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐶 Colinear 〈𝐴, 𝐵〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2106 〈cop 4590 class class class wbr 5103 ‘cfv 6491 ℕcn 12086 𝔼cee 27614 Btwn cbtwn 27615 Colinear ccolin 34481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pr 5382 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-opab 5166 df-xp 5636 df-rel 5637 df-cnv 5638 df-iota 6443 df-fv 6499 df-oprab 7353 df-colinear 34483 |
This theorem is referenced by: btwnconn1lem12 34542 lineunray 34591 lineelsb2 34592 |
Copyright terms: Public domain | W3C validator |