MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulerpqlem Structured version   Visualization version   GIF version

Theorem mulerpqlem 10711
Description: Lemma for mulerpq 10713. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulerpqlem ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (𝐴 ·pQ 𝐶) ~Q (𝐵 ·pQ 𝐶)))

Proof of Theorem mulerpqlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7863 . . . . 5 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
213ad2ant1 1132 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐴) ∈ N)
3 xp1st 7863 . . . . 5 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
433ad2ant3 1134 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐶) ∈ N)
5 mulclpi 10649 . . . 4 (((1st𝐴) ∈ N ∧ (1st𝐶) ∈ N) → ((1st𝐴) ·N (1st𝐶)) ∈ N)
62, 4, 5syl2anc 584 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐴) ·N (1st𝐶)) ∈ N)
7 xp2nd 7864 . . . . 5 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
873ad2ant1 1132 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐴) ∈ N)
9 xp2nd 7864 . . . . 5 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
1093ad2ant3 1134 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐶) ∈ N)
11 mulclpi 10649 . . . 4 (((2nd𝐴) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐴) ·N (2nd𝐶)) ∈ N)
128, 10, 11syl2anc 584 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((2nd𝐴) ·N (2nd𝐶)) ∈ N)
13 xp1st 7863 . . . . 5 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
14133ad2ant2 1133 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐵) ∈ N)
15 mulclpi 10649 . . . 4 (((1st𝐵) ∈ N ∧ (1st𝐶) ∈ N) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
1614, 4, 15syl2anc 584 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
17 xp2nd 7864 . . . . 5 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
18173ad2ant2 1133 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐵) ∈ N)
19 mulclpi 10649 . . . 4 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
2018, 10, 19syl2anc 584 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
21 enqbreq 10675 . . 3 (((((1st𝐴) ·N (1st𝐶)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐶)) ∈ N) ∧ (((1st𝐵) ·N (1st𝐶)) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩ ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))))
226, 12, 16, 20, 21syl22anc 836 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩ ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))))
23 mulpipq2 10695 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ·pQ 𝐶) = ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩)
24233adant2 1130 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ·pQ 𝐶) = ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩)
25 mulpipq2 10695 . . . 4 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
26253adant1 1129 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
2724, 26breq12d 5087 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((𝐴 ·pQ 𝐶) ~Q (𝐵 ·pQ 𝐶) ↔ ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩))
28 enqbreq2 10676 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
29283adant3 1131 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
30 mulclpi 10649 . . . . 5 (((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
314, 10, 30syl2anc 584 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
32 mulclpi 10649 . . . . 5 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
332, 18, 32syl2anc 584 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
34 mulcanpi 10656 . . . 4 ((((1st𝐶) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐴) ·N (2nd𝐵)) ∈ N) → ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
3531, 33, 34syl2anc 584 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
36 mulcompi 10652 . . . . . 6 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐶)))
37 fvex 6787 . . . . . . 7 (1st𝐴) ∈ V
38 fvex 6787 . . . . . . 7 (2nd𝐵) ∈ V
39 fvex 6787 . . . . . . 7 (1st𝐶) ∈ V
40 mulcompi 10652 . . . . . . 7 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
41 mulasspi 10653 . . . . . . 7 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
42 fvex 6787 . . . . . . 7 (2nd𝐶) ∈ V
4337, 38, 39, 40, 41, 42caov4 7503 . . . . . 6 (((1st𝐴) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐶))) = (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶)))
4436, 43eqtri 2766 . . . . 5 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶)))
45 mulcompi 10652 . . . . . 6 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐵) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐶)))
46 fvex 6787 . . . . . . 7 (1st𝐵) ∈ V
47 fvex 6787 . . . . . . 7 (2nd𝐴) ∈ V
4846, 47, 39, 40, 41, 42caov4 7503 . . . . . 6 (((1st𝐵) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐶))) = (((1st𝐵) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐶)))
49 mulcompi 10652 . . . . . 6 (((1st𝐵) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))
5045, 48, 493eqtri 2770 . . . . 5 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))
5144, 50eqeq12i 2756 . . . 4 ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶))))
5251a1i 11 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))))
5329, 35, 523bitr2d 307 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))))
5422, 27, 533bitr4rd 312 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (𝐴 ·pQ 𝐶) ~Q (𝐵 ·pQ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  cop 4567   class class class wbr 5074   × cxp 5587  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  Ncnpi 10600   ·N cmi 10602   ·pQ cmpq 10605   ~Q ceq 10607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-oadd 8301  df-omul 8302  df-ni 10628  df-mi 10630  df-mpq 10665  df-enq 10667
This theorem is referenced by:  mulerpq  10713
  Copyright terms: Public domain W3C validator