MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulerpqlem Structured version   Visualization version   GIF version

Theorem mulerpqlem 11024
Description: Lemma for mulerpq 11026. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulerpqlem ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (𝐴 ·pQ 𝐶) ~Q (𝐵 ·pQ 𝐶)))

Proof of Theorem mulerpqlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 8062 . . . . 5 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
213ad2ant1 1133 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐴) ∈ N)
3 xp1st 8062 . . . . 5 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
433ad2ant3 1135 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐶) ∈ N)
5 mulclpi 10962 . . . 4 (((1st𝐴) ∈ N ∧ (1st𝐶) ∈ N) → ((1st𝐴) ·N (1st𝐶)) ∈ N)
62, 4, 5syl2anc 583 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐴) ·N (1st𝐶)) ∈ N)
7 xp2nd 8063 . . . . 5 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
873ad2ant1 1133 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐴) ∈ N)
9 xp2nd 8063 . . . . 5 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
1093ad2ant3 1135 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐶) ∈ N)
11 mulclpi 10962 . . . 4 (((2nd𝐴) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐴) ·N (2nd𝐶)) ∈ N)
128, 10, 11syl2anc 583 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((2nd𝐴) ·N (2nd𝐶)) ∈ N)
13 xp1st 8062 . . . . 5 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
14133ad2ant2 1134 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐵) ∈ N)
15 mulclpi 10962 . . . 4 (((1st𝐵) ∈ N ∧ (1st𝐶) ∈ N) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
1614, 4, 15syl2anc 583 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
17 xp2nd 8063 . . . . 5 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
18173ad2ant2 1134 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐵) ∈ N)
19 mulclpi 10962 . . . 4 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
2018, 10, 19syl2anc 583 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
21 enqbreq 10988 . . 3 (((((1st𝐴) ·N (1st𝐶)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐶)) ∈ N) ∧ (((1st𝐵) ·N (1st𝐶)) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩ ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))))
226, 12, 16, 20, 21syl22anc 838 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩ ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))))
23 mulpipq2 11008 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ·pQ 𝐶) = ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩)
24233adant2 1131 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ·pQ 𝐶) = ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩)
25 mulpipq2 11008 . . . 4 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
26253adant1 1130 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
2724, 26breq12d 5179 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((𝐴 ·pQ 𝐶) ~Q (𝐵 ·pQ 𝐶) ↔ ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩))
28 enqbreq2 10989 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
29283adant3 1132 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
30 mulclpi 10962 . . . . 5 (((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
314, 10, 30syl2anc 583 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
32 mulclpi 10962 . . . . 5 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
332, 18, 32syl2anc 583 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
34 mulcanpi 10969 . . . 4 ((((1st𝐶) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐴) ·N (2nd𝐵)) ∈ N) → ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
3531, 33, 34syl2anc 583 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
36 mulcompi 10965 . . . . . 6 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐶)))
37 fvex 6933 . . . . . . 7 (1st𝐴) ∈ V
38 fvex 6933 . . . . . . 7 (2nd𝐵) ∈ V
39 fvex 6933 . . . . . . 7 (1st𝐶) ∈ V
40 mulcompi 10965 . . . . . . 7 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
41 mulasspi 10966 . . . . . . 7 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
42 fvex 6933 . . . . . . 7 (2nd𝐶) ∈ V
4337, 38, 39, 40, 41, 42caov4 7681 . . . . . 6 (((1st𝐴) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐶))) = (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶)))
4436, 43eqtri 2768 . . . . 5 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶)))
45 mulcompi 10965 . . . . . 6 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐵) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐶)))
46 fvex 6933 . . . . . . 7 (1st𝐵) ∈ V
47 fvex 6933 . . . . . . 7 (2nd𝐴) ∈ V
4846, 47, 39, 40, 41, 42caov4 7681 . . . . . 6 (((1st𝐵) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐶))) = (((1st𝐵) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐶)))
49 mulcompi 10965 . . . . . 6 (((1st𝐵) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))
5045, 48, 493eqtri 2772 . . . . 5 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))
5144, 50eqeq12i 2758 . . . 4 ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶))))
5251a1i 11 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))))
5329, 35, 523bitr2d 307 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))))
5422, 27, 533bitr4rd 312 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (𝐴 ·pQ 𝐶) ~Q (𝐵 ·pQ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  cop 4654   class class class wbr 5166   × cxp 5698  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  Ncnpi 10913   ·N cmi 10915   ·pQ cmpq 10918   ~Q ceq 10920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-oadd 8526  df-omul 8527  df-ni 10941  df-mi 10943  df-mpq 10978  df-enq 10980
This theorem is referenced by:  mulerpq  11026
  Copyright terms: Public domain W3C validator