MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulerpqlem Structured version   Visualization version   GIF version

Theorem mulerpqlem 10853
Description: Lemma for mulerpq 10855. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulerpqlem ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (𝐴 ·pQ 𝐶) ~Q (𝐵 ·pQ 𝐶)))

Proof of Theorem mulerpqlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7959 . . . . 5 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
213ad2ant1 1133 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐴) ∈ N)
3 xp1st 7959 . . . . 5 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
433ad2ant3 1135 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐶) ∈ N)
5 mulclpi 10791 . . . 4 (((1st𝐴) ∈ N ∧ (1st𝐶) ∈ N) → ((1st𝐴) ·N (1st𝐶)) ∈ N)
62, 4, 5syl2anc 584 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐴) ·N (1st𝐶)) ∈ N)
7 xp2nd 7960 . . . . 5 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
873ad2ant1 1133 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐴) ∈ N)
9 xp2nd 7960 . . . . 5 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
1093ad2ant3 1135 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐶) ∈ N)
11 mulclpi 10791 . . . 4 (((2nd𝐴) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐴) ·N (2nd𝐶)) ∈ N)
128, 10, 11syl2anc 584 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((2nd𝐴) ·N (2nd𝐶)) ∈ N)
13 xp1st 7959 . . . . 5 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
14133ad2ant2 1134 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐵) ∈ N)
15 mulclpi 10791 . . . 4 (((1st𝐵) ∈ N ∧ (1st𝐶) ∈ N) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
1614, 4, 15syl2anc 584 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
17 xp2nd 7960 . . . . 5 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
18173ad2ant2 1134 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐵) ∈ N)
19 mulclpi 10791 . . . 4 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
2018, 10, 19syl2anc 584 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
21 enqbreq 10817 . . 3 (((((1st𝐴) ·N (1st𝐶)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐶)) ∈ N) ∧ (((1st𝐵) ·N (1st𝐶)) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩ ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))))
226, 12, 16, 20, 21syl22anc 838 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩ ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))))
23 mulpipq2 10837 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ·pQ 𝐶) = ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩)
24233adant2 1131 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ·pQ 𝐶) = ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩)
25 mulpipq2 10837 . . . 4 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
26253adant1 1130 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
2724, 26breq12d 5106 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((𝐴 ·pQ 𝐶) ~Q (𝐵 ·pQ 𝐶) ↔ ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩))
28 enqbreq2 10818 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
29283adant3 1132 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
30 mulclpi 10791 . . . . 5 (((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
314, 10, 30syl2anc 584 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
32 mulclpi 10791 . . . . 5 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
332, 18, 32syl2anc 584 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
34 mulcanpi 10798 . . . 4 ((((1st𝐶) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐴) ·N (2nd𝐵)) ∈ N) → ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
3531, 33, 34syl2anc 584 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
36 mulcompi 10794 . . . . . 6 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐶)))
37 fvex 6841 . . . . . . 7 (1st𝐴) ∈ V
38 fvex 6841 . . . . . . 7 (2nd𝐵) ∈ V
39 fvex 6841 . . . . . . 7 (1st𝐶) ∈ V
40 mulcompi 10794 . . . . . . 7 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
41 mulasspi 10795 . . . . . . 7 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
42 fvex 6841 . . . . . . 7 (2nd𝐶) ∈ V
4337, 38, 39, 40, 41, 42caov4 7583 . . . . . 6 (((1st𝐴) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐶))) = (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶)))
4436, 43eqtri 2756 . . . . 5 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶)))
45 mulcompi 10794 . . . . . 6 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐵) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐶)))
46 fvex 6841 . . . . . . 7 (1st𝐵) ∈ V
47 fvex 6841 . . . . . . 7 (2nd𝐴) ∈ V
4846, 47, 39, 40, 41, 42caov4 7583 . . . . . 6 (((1st𝐵) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐶))) = (((1st𝐵) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐶)))
49 mulcompi 10794 . . . . . 6 (((1st𝐵) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))
5045, 48, 493eqtri 2760 . . . . 5 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))
5144, 50eqeq12i 2751 . . . 4 ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶))))
5251a1i 11 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))))
5329, 35, 523bitr2d 307 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (1st𝐶)))))
5422, 27, 533bitr4rd 312 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (𝐴 ·pQ 𝐶) ~Q (𝐵 ·pQ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2113  cop 4581   class class class wbr 5093   × cxp 5617  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  Ncnpi 10742   ·N cmi 10744   ·pQ cmpq 10747   ~Q ceq 10749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-oadd 8395  df-omul 8396  df-ni 10770  df-mi 10772  df-mpq 10807  df-enq 10809
This theorem is referenced by:  mulerpq  10855
  Copyright terms: Public domain W3C validator