MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcocl Structured version   Visualization version   GIF version

Theorem catcocl 16948
Description: Closure of a composition arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catcocl.b 𝐵 = (Base‘𝐶)
catcocl.h 𝐻 = (Hom ‘𝐶)
catcocl.o · = (comp‘𝐶)
catcocl.c (𝜑𝐶 ∈ Cat)
catcocl.x (𝜑𝑋𝐵)
catcocl.y (𝜑𝑌𝐵)
catcocl.z (𝜑𝑍𝐵)
catcocl.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
catcocl.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
catcocl (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐻𝑍))

Proof of Theorem catcocl
Dummy variables 𝑓 𝑔 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcocl.c . . 3 (𝜑𝐶 ∈ Cat)
2 catcocl.b . . . . 5 𝐵 = (Base‘𝐶)
3 catcocl.h . . . . 5 𝐻 = (Hom ‘𝐶)
4 catcocl.o . . . . 5 · = (comp‘𝐶)
52, 3, 4iscat 16935 . . . 4 (𝐶 ∈ Cat → (𝐶 ∈ Cat ↔ ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑣 ∈ (𝑧𝐻𝑤)((𝑣(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑣(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))))))
65ibi 270 . . 3 (𝐶 ∈ Cat → ∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑣 ∈ (𝑧𝐻𝑤)((𝑣(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑣(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))))
7 simpl 486 . . . . . . 7 (((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑣 ∈ (𝑧𝐻𝑤)((𝑣(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑣(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
872ralimi 3129 . . . . . 6 (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑣 ∈ (𝑧𝐻𝑤)((𝑣(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑣(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
982ralimi 3129 . . . . 5 (∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑣 ∈ (𝑧𝐻𝑤)((𝑣(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑣(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
109adantl 485 . . . 4 ((∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑣 ∈ (𝑧𝐻𝑤)((𝑣(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑣(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
1110ralimi 3128 . . 3 (∀𝑥𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(⟨𝑥, 𝑥· 𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤𝐵𝑣 ∈ (𝑧𝐻𝑤)((𝑣(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑣(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))) → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
121, 6, 113syl 18 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
13 catcocl.x . . 3 (𝜑𝑋𝐵)
14 catcocl.y . . . . 5 (𝜑𝑌𝐵)
1514adantr 484 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
16 catcocl.z . . . . . 6 (𝜑𝑍𝐵)
1716ad2antrr 725 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑍𝐵)
18 catcocl.f . . . . . . . 8 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
1918ad3antrrr 729 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑋𝐻𝑌))
20 simpllr 775 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑥 = 𝑋)
21 simplr 768 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌)
2220, 21oveq12d 7153 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
2319, 22eleqtrrd 2893 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑥𝐻𝑦))
24 catcocl.g . . . . . . . . . 10 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
2524ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐺 ∈ (𝑌𝐻𝑍))
26 simpr 488 . . . . . . . . . 10 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑧 = 𝑍)
2721, 26oveq12d 7153 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑦𝐻𝑧) = (𝑌𝐻𝑍))
2825, 27eleqtrrd 2893 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐺 ∈ (𝑦𝐻𝑧))
2928adantr 484 . . . . . . 7 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑦𝐻𝑧))
30 simp-5r 785 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑥 = 𝑋)
31 simp-4r 783 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑦 = 𝑌)
3230, 31opeq12d 4773 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
33 simpllr 775 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑧 = 𝑍)
3432, 33oveq12d 7153 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑋, 𝑌· 𝑍))
35 simpr 488 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺)
36 simplr 768 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹)
3734, 35, 36oveq123d 7156 . . . . . . . 8 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
3830, 33oveq12d 7153 . . . . . . . 8 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑥𝐻𝑧) = (𝑋𝐻𝑍))
3937, 38eleq12d 2884 . . . . . . 7 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ↔ (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐻𝑍)))
4029, 39rspcdv 3563 . . . . . 6 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐻𝑍)))
4123, 40rspcimdv 3561 . . . . 5 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐻𝑍)))
4217, 41rspcimdv 3561 . . . 4 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐻𝑍)))
4315, 42rspcimdv 3561 . . 3 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐻𝑍)))
4413, 43rspcimdv 3561 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐻𝑍)))
4512, 44mpd 15 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐻𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  cop 4531  cfv 6324  (class class class)co 7135  Basecbs 16475  Hom chom 16568  compcco 16569  Catccat 16927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138  df-cat 16931
This theorem is referenced by:  oppccatid  16981  ismon2  16996  isepi2  17003  sectco  17018  monsect  17045  catsubcat  17101  issubc3  17111  fullsubc  17112  idfucl  17143  cofucl  17150  fthsect  17187  fthmon  17189  fuccocl  17226  invfuc  17236  2initoinv  17262  initoeu2lem0  17265  initoeu2lem1  17266  initoeu2  17268  2termoinv  17269  coahom  17322  catcisolem  17358  xpccatid  17430  1stfcl  17439  2ndfcl  17440  prfcl  17445  evlfcllem  17463  evlfcl  17464  curf1cl  17470  curfcl  17474  hofcllem  17500  hofcl  17501  yon12  17507  hofpropd  17509  yonedalem4c  17519  bj-endmnd  34732  srhmsubc  44700  srhmsubcALTV  44718
  Copyright terms: Public domain W3C validator