| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellimciota | Structured version Visualization version GIF version | ||
| Description: An explicit value for the limit, when the limit exists at a limit point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ellimciota.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| ellimciota.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| ellimciota.b | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) |
| ellimciota.4 | ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) |
| ellimciota.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| ellimciota | ⊢ (𝜑 → (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ 𝑦 ∈ (𝐹 limℂ 𝐵))) | |
| 2 | 1 | cbviotavw 6441 | . 2 ⊢ (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) = (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) |
| 3 | iotaex 6453 | . . . 4 ⊢ (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ V | |
| 4 | ellimciota.4 | . . . . . 6 ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) | |
| 5 | n0 4301 | . . . . . 6 ⊢ ((𝐹 limℂ 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) | |
| 6 | 4, 5 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) |
| 7 | ellimciota.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 8 | ellimciota.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 9 | ellimciota.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) | |
| 10 | ellimciota.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 11 | 7, 8, 9, 10 | limcmo 25803 | . . . . 5 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) |
| 12 | df-eu 2563 | . . . . 5 ⊢ (∃!𝑥 𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (∃𝑥 𝑥 ∈ (𝐹 limℂ 𝐵) ∧ ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵))) | |
| 13 | 6, 11, 12 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → ∃!𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) |
| 14 | eleq1 2817 | . . . . 5 ⊢ (𝑥 = (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵))) | |
| 15 | 14 | iota2 6466 | . . . 4 ⊢ (((℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ V ∧ ∃!𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) → ((℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵) ↔ (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) = (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)))) |
| 16 | 3, 13, 15 | sylancr 587 | . . 3 ⊢ (𝜑 → ((℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵) ↔ (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) = (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)))) |
| 17 | 2, 16 | mpbiri 258 | . 2 ⊢ (𝜑 → (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) |
| 18 | 2, 17 | eqeltrid 2833 | 1 ⊢ (𝜑 → (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2110 ∃*wmo 2532 ∃!weu 2562 ≠ wne 2926 Vcvv 3434 ⊆ wss 3900 ∅c0 4281 ℩cio 6431 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 TopOpenctopn 17317 ℂfldccnfld 21284 limPtclp 23042 limℂ climc 25783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fi 9290 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-icc 13244 df-fz 13400 df-seq 13901 df-exp 13961 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-struct 17050 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-mulr 17167 df-starv 17168 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-rest 17318 df-topn 17319 df-topgen 17339 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cld 22927 df-ntr 22928 df-cls 22929 df-nei 23006 df-lp 23044 df-cnp 23136 df-haus 23223 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-xms 24228 df-ms 24229 df-limc 25787 |
| This theorem is referenced by: fourierdlem94 46217 fourierdlem113 46236 |
| Copyright terms: Public domain | W3C validator |