![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellimciota | Structured version Visualization version GIF version |
Description: An explicit value for the limit, when the limit exists at a limit point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ellimciota.f | β’ (π β πΉ:π΄βΆβ) |
ellimciota.a | β’ (π β π΄ β β) |
ellimciota.b | β’ (π β π΅ β ((limPtβπΎ)βπ΄)) |
ellimciota.4 | β’ (π β (πΉ limβ π΅) β β ) |
ellimciota.k | β’ πΎ = (TopOpenββfld) |
Ref | Expression |
---|---|
ellimciota | β’ (π β (β©π₯π₯ β (πΉ limβ π΅)) β (πΉ limβ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2813 | . . 3 β’ (π₯ = π¦ β (π₯ β (πΉ limβ π΅) β π¦ β (πΉ limβ π΅))) | |
2 | 1 | cbviotavw 6493 | . 2 β’ (β©π₯π₯ β (πΉ limβ π΅)) = (β©π¦π¦ β (πΉ limβ π΅)) |
3 | iotaex 6506 | . . . 4 β’ (β©π¦π¦ β (πΉ limβ π΅)) β V | |
4 | ellimciota.4 | . . . . . 6 β’ (π β (πΉ limβ π΅) β β ) | |
5 | n0 4338 | . . . . . 6 β’ ((πΉ limβ π΅) β β β βπ₯ π₯ β (πΉ limβ π΅)) | |
6 | 4, 5 | sylib 217 | . . . . 5 β’ (π β βπ₯ π₯ β (πΉ limβ π΅)) |
7 | ellimciota.f | . . . . . 6 β’ (π β πΉ:π΄βΆβ) | |
8 | ellimciota.a | . . . . . 6 β’ (π β π΄ β β) | |
9 | ellimciota.b | . . . . . 6 β’ (π β π΅ β ((limPtβπΎ)βπ΄)) | |
10 | ellimciota.k | . . . . . 6 β’ πΎ = (TopOpenββfld) | |
11 | 7, 8, 9, 10 | limcmo 25733 | . . . . 5 β’ (π β β*π₯ π₯ β (πΉ limβ π΅)) |
12 | df-eu 2555 | . . . . 5 β’ (β!π₯ π₯ β (πΉ limβ π΅) β (βπ₯ π₯ β (πΉ limβ π΅) β§ β*π₯ π₯ β (πΉ limβ π΅))) | |
13 | 6, 11, 12 | sylanbrc 582 | . . . 4 β’ (π β β!π₯ π₯ β (πΉ limβ π΅)) |
14 | eleq1 2813 | . . . . 5 β’ (π₯ = (β©π¦π¦ β (πΉ limβ π΅)) β (π₯ β (πΉ limβ π΅) β (β©π¦π¦ β (πΉ limβ π΅)) β (πΉ limβ π΅))) | |
15 | 14 | iota2 6522 | . . . 4 β’ (((β©π¦π¦ β (πΉ limβ π΅)) β V β§ β!π₯ π₯ β (πΉ limβ π΅)) β ((β©π¦π¦ β (πΉ limβ π΅)) β (πΉ limβ π΅) β (β©π₯π₯ β (πΉ limβ π΅)) = (β©π¦π¦ β (πΉ limβ π΅)))) |
16 | 3, 13, 15 | sylancr 586 | . . 3 β’ (π β ((β©π¦π¦ β (πΉ limβ π΅)) β (πΉ limβ π΅) β (β©π₯π₯ β (πΉ limβ π΅)) = (β©π¦π¦ β (πΉ limβ π΅)))) |
17 | 2, 16 | mpbiri 258 | . 2 β’ (π β (β©π¦π¦ β (πΉ limβ π΅)) β (πΉ limβ π΅)) |
18 | 2, 17 | eqeltrid 2829 | 1 β’ (π β (β©π₯π₯ β (πΉ limβ π΅)) β (πΉ limβ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 βwex 1773 β wcel 2098 β*wmo 2524 β!weu 2554 β wne 2932 Vcvv 3466 β wss 3940 β c0 4314 β©cio 6483 βΆwf 6529 βcfv 6533 (class class class)co 7401 βcc 11104 TopOpenctopn 17366 βfldccnfld 21228 limPtclp 22960 limβ climc 25713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fi 9402 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-icc 13328 df-fz 13482 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-rest 17367 df-topn 17368 df-topgen 17388 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-fbas 21225 df-fg 21226 df-cnfld 21229 df-top 22718 df-topon 22735 df-topsp 22757 df-bases 22771 df-cld 22845 df-ntr 22846 df-cls 22847 df-nei 22924 df-lp 22962 df-cnp 23054 df-haus 23141 df-fil 23672 df-fm 23764 df-flim 23765 df-flf 23766 df-xms 24148 df-ms 24149 df-limc 25717 |
This theorem is referenced by: fourierdlem94 45401 fourierdlem113 45420 |
Copyright terms: Public domain | W3C validator |