| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellimciota | Structured version Visualization version GIF version | ||
| Description: An explicit value for the limit, when the limit exists at a limit point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ellimciota.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| ellimciota.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| ellimciota.b | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) |
| ellimciota.4 | ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) |
| ellimciota.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| ellimciota | ⊢ (𝜑 → (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ 𝑦 ∈ (𝐹 limℂ 𝐵))) | |
| 2 | 1 | cbviotavw 6460 | . 2 ⊢ (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) = (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) |
| 3 | iotaex 6472 | . . . 4 ⊢ (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ V | |
| 4 | ellimciota.4 | . . . . . 6 ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) | |
| 5 | n0 4312 | . . . . . 6 ⊢ ((𝐹 limℂ 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) | |
| 6 | 4, 5 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) |
| 7 | ellimciota.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 8 | ellimciota.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 9 | ellimciota.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) | |
| 10 | ellimciota.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 11 | 7, 8, 9, 10 | limcmo 25817 | . . . . 5 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) |
| 12 | df-eu 2562 | . . . . 5 ⊢ (∃!𝑥 𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (∃𝑥 𝑥 ∈ (𝐹 limℂ 𝐵) ∧ ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵))) | |
| 13 | 6, 11, 12 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → ∃!𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) |
| 14 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵))) | |
| 15 | 14 | iota2 6488 | . . . 4 ⊢ (((℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ V ∧ ∃!𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) → ((℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵) ↔ (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) = (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)))) |
| 16 | 3, 13, 15 | sylancr 587 | . . 3 ⊢ (𝜑 → ((℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵) ↔ (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) = (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)))) |
| 17 | 2, 16 | mpbiri 258 | . 2 ⊢ (𝜑 → (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) |
| 18 | 2, 17 | eqeltrid 2832 | 1 ⊢ (𝜑 → (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2531 ∃!weu 2561 ≠ wne 2925 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 ℩cio 6450 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11044 TopOpenctopn 17361 ℂfldccnfld 21297 limPtclp 23055 limℂ climc 25797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-rp 12930 df-xneg 13050 df-xadd 13051 df-xmul 13052 df-icc 13291 df-fz 13447 df-seq 13945 df-exp 14005 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17094 df-slot 17129 df-ndx 17141 df-base 17157 df-plusg 17210 df-mulr 17211 df-starv 17212 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-rest 17362 df-topn 17363 df-topgen 17383 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-lp 23057 df-cnp 23149 df-haus 23236 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-xms 24242 df-ms 24243 df-limc 25801 |
| This theorem is referenced by: fourierdlem94 46192 fourierdlem113 46211 |
| Copyright terms: Public domain | W3C validator |