Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem110 Structured version   Visualization version   GIF version

Theorem fourierdlem110 42495
 Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any value 𝑋. This lemma generalizes fourierdlem92 42477 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem110.a (𝜑𝐴 ∈ ℝ)
fourierdlem110.b (𝜑𝐵 ∈ ℝ)
fourierdlem110.t 𝑇 = (𝐵𝐴)
fourierdlem110.x (𝜑𝑋 ∈ ℝ)
fourierdlem110.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem110.m (𝜑𝑀 ∈ ℕ)
fourierdlem110.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem110.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem110.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem110.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem110.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem110.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem110 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑖,𝐹,𝑥   𝑥,𝐿   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑖,𝑋,𝑥   𝑚,𝑋,𝑝   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑖,𝑚,𝑝)   𝑅(𝑖,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem110
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑤 𝑦 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem110.a . 2 (𝜑𝐴 ∈ ℝ)
2 fourierdlem110.b . 2 (𝜑𝐵 ∈ ℝ)
3 fourierdlem110.t . 2 𝑇 = (𝐵𝐴)
4 fourierdlem110.x . 2 (𝜑𝑋 ∈ ℝ)
5 fourierdlem110.p . 2 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
6 fourierdlem110.m . 2 (𝜑𝑀 ∈ ℕ)
7 fourierdlem110.q . 2 (𝜑𝑄 ∈ (𝑃𝑀))
8 fourierdlem110.f . 2 (𝜑𝐹:ℝ⟶ℂ)
9 fourierdlem110.fper . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
10 fourierdlem110.fcn . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
11 fourierdlem110.r . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
12 fourierdlem110.l . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
13 eqid 2821 . 2 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
14 oveq1 7157 . . . . . 6 (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
1514eleq1d 2897 . . . . 5 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
1615rexbidv 3297 . . . 4 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
1716cbvrabv 3491 . . 3 {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
1817uneq2i 4135 . 2 ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
19 oveq1 7157 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑙 · 𝑇) = (𝑘 · 𝑇))
2019oveq2d 7166 . . . . . . . . 9 (𝑙 = 𝑘 → (𝑦 + (𝑙 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
2120eleq1d 2897 . . . . . . . 8 (𝑙 = 𝑘 → ((𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2221cbvrexvw 3450 . . . . . . 7 (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄)
2322a1i 11 . . . . . 6 (𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) → (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2423rabbiia 3472 . . . . 5 {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}
2524uneq2i 4135 . . . 4 ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
2625fveq2i 6667 . . 3 (♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
2726oveq1i 7160 . 2 ((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
28 isoeq5 7068 . . . . 5 (({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
2925, 28ax-mp 5 . . . 4 (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
30 isoeq1 7064 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3129, 30syl5bb 285 . . 3 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3231cbviotavw 6316 . 2 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
33 id 22 . . . 4 (𝑦 = 𝑥𝑦 = 𝑥)
34 oveq2 7158 . . . . . . 7 (𝑦 = 𝑥 → (𝐵𝑦) = (𝐵𝑥))
3534oveq1d 7165 . . . . . 6 (𝑦 = 𝑥 → ((𝐵𝑦) / 𝑇) = ((𝐵𝑥) / 𝑇))
3635fveq2d 6668 . . . . 5 (𝑦 = 𝑥 → (⌊‘((𝐵𝑦) / 𝑇)) = (⌊‘((𝐵𝑥) / 𝑇)))
3736oveq1d 7165 . . . 4 (𝑦 = 𝑥 → ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
3833, 37oveq12d 7168 . . 3 (𝑦 = 𝑥 → (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
3938cbvmptv 5161 . 2 (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
40 eqeq1 2825 . . . 4 (𝑦 = 𝑤 → (𝑦 = 𝐵𝑤 = 𝐵))
41 id 22 . . . 4 (𝑦 = 𝑤𝑦 = 𝑤)
4240, 41ifbieq2d 4491 . . 3 (𝑦 = 𝑤 → if(𝑦 = 𝐵, 𝐴, 𝑦) = if(𝑤 = 𝐵, 𝐴, 𝑤))
4342cbvmptv 5161 . 2 (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) = (𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))
44 fveq2 6664 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑧) = ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑥))
4544fveq2d 6668 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑧)) = ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑥)))
4645breq2d 5070 . . . . 5 (𝑧 = 𝑥 → ((𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑧)) ↔ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑥))))
4746rabbidv 3480 . . . 4 (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑥))})
4847supeq1d 8904 . . 3 (𝑧 = 𝑥 → sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
4948cbvmptv 5161 . 2 (𝑧 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
501, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 27, 32, 39, 43, 49fourierdlem109 42494 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1533   ∈ wcel 2110  ∀wral 3138  ∃wrex 3139  {crab 3142   ∪ cun 3933  ifcif 4466  {cpr 4562   class class class wbr 5058   ↦ cmpt 5138  ran crn 5550   ↾ cres 5551  ℩cio 6306  ⟶wf 6345  ‘cfv 6349   Isom wiso 6350  (class class class)co 7150   ↑m cmap 8400  supcsup 8898  ℂcc 10529  ℝcr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669   ≤ cle 10670   − cmin 10864   / cdiv 11291  ℕcn 11632  ℤcz 11975  (,)cioo 12732  (,]cioc 12733  [,]cicc 12735  ...cfz 12886  ..^cfzo 13027  ⌊cfl 13154  ♯chash 13684  –cn→ccncf 23478  ∫citg 24213   limℂ climc 24454 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-symdif 4218  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-ovol 24059  df-vol 24060  df-mbf 24214  df-itg1 24215  df-itg2 24216  df-ibl 24217  df-itg 24218  df-0p 24265  df-ditg 24439  df-limc 24458  df-dv 24459 This theorem is referenced by:  fourierdlem111  42496
 Copyright terms: Public domain W3C validator