Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem110 Structured version   Visualization version   GIF version

Theorem fourierdlem110 46193
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any value 𝑋. This lemma generalizes fourierdlem92 46175 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem110.a (𝜑𝐴 ∈ ℝ)
fourierdlem110.b (𝜑𝐵 ∈ ℝ)
fourierdlem110.t 𝑇 = (𝐵𝐴)
fourierdlem110.x (𝜑𝑋 ∈ ℝ)
fourierdlem110.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem110.m (𝜑𝑀 ∈ ℕ)
fourierdlem110.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem110.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem110.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem110.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem110.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem110.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem110 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑖,𝐹,𝑥   𝑥,𝐿   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑖,𝑋,𝑥   𝑚,𝑋,𝑝   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑖,𝑚,𝑝)   𝑅(𝑖,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem110
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑤 𝑦 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem110.a . 2 (𝜑𝐴 ∈ ℝ)
2 fourierdlem110.b . 2 (𝜑𝐵 ∈ ℝ)
3 fourierdlem110.t . 2 𝑇 = (𝐵𝐴)
4 fourierdlem110.x . 2 (𝜑𝑋 ∈ ℝ)
5 fourierdlem110.p . 2 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
6 fourierdlem110.m . 2 (𝜑𝑀 ∈ ℕ)
7 fourierdlem110.q . 2 (𝜑𝑄 ∈ (𝑃𝑀))
8 fourierdlem110.f . 2 (𝜑𝐹:ℝ⟶ℂ)
9 fourierdlem110.fper . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
10 fourierdlem110.fcn . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
11 fourierdlem110.r . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
12 fourierdlem110.l . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
13 eqid 2735 . 2 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
14 oveq1 7410 . . . . . 6 (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
1514eleq1d 2819 . . . . 5 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
1615rexbidv 3164 . . . 4 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
1716cbvrabv 3426 . . 3 {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
1817uneq2i 4140 . 2 ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
19 oveq1 7410 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑙 · 𝑇) = (𝑘 · 𝑇))
2019oveq2d 7419 . . . . . . . . 9 (𝑙 = 𝑘 → (𝑦 + (𝑙 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
2120eleq1d 2819 . . . . . . . 8 (𝑙 = 𝑘 → ((𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2221cbvrexvw 3221 . . . . . . 7 (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄)
2322a1i 11 . . . . . 6 (𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) → (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2423rabbiia 3419 . . . . 5 {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}
2524uneq2i 4140 . . . 4 ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
2625fveq2i 6878 . . 3 (♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
2726oveq1i 7413 . 2 ((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
28 isoeq5 7313 . . . . 5 (({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
2925, 28ax-mp 5 . . . 4 (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
30 isoeq1 7309 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3129, 30bitrid 283 . . 3 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3231cbviotavw 6491 . 2 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
33 id 22 . . . 4 (𝑦 = 𝑥𝑦 = 𝑥)
34 oveq2 7411 . . . . . . 7 (𝑦 = 𝑥 → (𝐵𝑦) = (𝐵𝑥))
3534oveq1d 7418 . . . . . 6 (𝑦 = 𝑥 → ((𝐵𝑦) / 𝑇) = ((𝐵𝑥) / 𝑇))
3635fveq2d 6879 . . . . 5 (𝑦 = 𝑥 → (⌊‘((𝐵𝑦) / 𝑇)) = (⌊‘((𝐵𝑥) / 𝑇)))
3736oveq1d 7418 . . . 4 (𝑦 = 𝑥 → ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
3833, 37oveq12d 7421 . . 3 (𝑦 = 𝑥 → (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
3938cbvmptv 5225 . 2 (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
40 eqeq1 2739 . . . 4 (𝑦 = 𝑤 → (𝑦 = 𝐵𝑤 = 𝐵))
41 id 22 . . . 4 (𝑦 = 𝑤𝑦 = 𝑤)
4240, 41ifbieq2d 4527 . . 3 (𝑦 = 𝑤 → if(𝑦 = 𝐵, 𝐴, 𝑦) = if(𝑤 = 𝐵, 𝐴, 𝑤))
4342cbvmptv 5225 . 2 (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) = (𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))
44 fveq2 6875 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑧) = ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑥))
4544fveq2d 6879 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑧)) = ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑥)))
4645breq2d 5131 . . . . 5 (𝑧 = 𝑥 → ((𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑧)) ↔ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑥))))
4746rabbidv 3423 . . . 4 (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑥))})
4847supeq1d 9456 . . 3 (𝑧 = 𝑥 → sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
4948cbvmptv 5225 . 2 (𝑧 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
501, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 27, 32, 39, 43, 49fourierdlem109 46192 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  cun 3924  ifcif 4500  {cpr 4603   class class class wbr 5119  cmpt 5201  ran crn 5655  cres 5656  cio 6481  wf 6526  cfv 6530   Isom wiso 6531  (class class class)co 7403  m cmap 8838  supcsup 9450  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   < clt 11267  cle 11268  cmin 11464   / cdiv 11892  cn 12238  cz 12586  (,)cioo 13360  (,]cioc 13361  [,]cicc 13363  ...cfz 13522  ..^cfzo 13669  cfl 13805  chash 14346  cnccncf 24818  citg 25569   lim climc 25813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-symdif 4228  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-ovol 25415  df-vol 25416  df-mbf 25570  df-itg1 25571  df-itg2 25572  df-ibl 25573  df-itg 25574  df-0p 25621  df-ditg 25798  df-limc 25817  df-dv 25818
This theorem is referenced by:  fourierdlem111  46194
  Copyright terms: Public domain W3C validator