Step | Hyp | Ref
| Expression |
1 | | fourierdlem110.a |
. 2
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | fourierdlem110.b |
. 2
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | fourierdlem110.t |
. 2
⊢ 𝑇 = (𝐵 − 𝐴) |
4 | | fourierdlem110.x |
. 2
⊢ (𝜑 → 𝑋 ∈ ℝ) |
5 | | fourierdlem110.p |
. 2
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
6 | | fourierdlem110.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
7 | | fourierdlem110.q |
. 2
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
8 | | fourierdlem110.f |
. 2
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
9 | | fourierdlem110.fper |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
10 | | fourierdlem110.fcn |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
11 | | fourierdlem110.r |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
12 | | fourierdlem110.l |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
13 | | eqid 2739 |
. 2
⊢ (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
(𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
14 | | oveq1 7190 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇))) |
15 | 14 | eleq1d 2818 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
16 | 15 | rexbidv 3208 |
. . . 4
⊢ (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
17 | 16 | cbvrabv 3394 |
. . 3
⊢ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} |
18 | 17 | uneq2i 4060 |
. 2
⊢ ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
19 | | oveq1 7190 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑘 → (𝑙 · 𝑇) = (𝑘 · 𝑇)) |
20 | 19 | oveq2d 7199 |
. . . . . . . . 9
⊢ (𝑙 = 𝑘 → (𝑦 + (𝑙 · 𝑇)) = (𝑦 + (𝑘 · 𝑇))) |
21 | 20 | eleq1d 2818 |
. . . . . . . 8
⊢ (𝑙 = 𝑘 → ((𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
22 | 21 | cbvrexvw 3351 |
. . . . . . 7
⊢
(∃𝑙 ∈
ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄) |
23 | 22 | a1i 11 |
. . . . . 6
⊢ (𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) → (∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
24 | 23 | rabbiia 3374 |
. . . . 5
⊢ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} |
25 | 24 | uneq2i 4060 |
. . . 4
⊢ ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
26 | 25 | fveq2i 6690 |
. . 3
⊢
(♯‘({(𝐴
− 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) |
27 | 26 | oveq1i 7193 |
. 2
⊢
((♯‘({(𝐴
− 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) |
28 | | isoeq5 7100 |
. . . . 5
⊢ (({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) |
29 | 25, 28 | ax-mp 5 |
. . . 4
⊢ (𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) |
30 | | isoeq1 7096 |
. . . 4
⊢ (𝑔 = 𝑓 → (𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) |
31 | 29, 30 | syl5bb 286 |
. . 3
⊢ (𝑔 = 𝑓 → (𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) |
32 | 31 | cbviotavw 6316 |
. 2
⊢
(℩𝑔𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑙 ∈ ℤ (𝑦 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) |
33 | | id 22 |
. . . 4
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) |
34 | | oveq2 7191 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝐵 − 𝑦) = (𝐵 − 𝑥)) |
35 | 34 | oveq1d 7198 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ((𝐵 − 𝑦) / 𝑇) = ((𝐵 − 𝑥) / 𝑇)) |
36 | 35 | fveq2d 6691 |
. . . . 5
⊢ (𝑦 = 𝑥 → (⌊‘((𝐵 − 𝑦) / 𝑇)) = (⌊‘((𝐵 − 𝑥) / 𝑇))) |
37 | 36 | oveq1d 7198 |
. . . 4
⊢ (𝑦 = 𝑥 → ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) |
38 | 33, 37 | oveq12d 7201 |
. . 3
⊢ (𝑦 = 𝑥 → (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
39 | 38 | cbvmptv 5143 |
. 2
⊢ (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
40 | | eqeq1 2743 |
. . . 4
⊢ (𝑦 = 𝑤 → (𝑦 = 𝐵 ↔ 𝑤 = 𝐵)) |
41 | | id 22 |
. . . 4
⊢ (𝑦 = 𝑤 → 𝑦 = 𝑤) |
42 | 40, 41 | ifbieq2d 4450 |
. . 3
⊢ (𝑦 = 𝑤 → if(𝑦 = 𝐵, 𝐴, 𝑦) = if(𝑤 = 𝐵, 𝐴, 𝑤)) |
43 | 42 | cbvmptv 5143 |
. 2
⊢ (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) = (𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤)) |
44 | | fveq2 6687 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)))‘𝑧) = ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)))‘𝑥)) |
45 | 44 | fveq2d 6691 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)))‘𝑧)) = ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)))‘𝑥))) |
46 | 45 | breq2d 5052 |
. . . . 5
⊢ (𝑧 = 𝑥 → ((𝑄‘𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)))‘𝑧)) ↔ (𝑄‘𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)))‘𝑥)))) |
47 | 46 | rabbidv 3382 |
. . . 4
⊢ (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)))‘𝑥))}) |
48 | 47 | supeq1d 8996 |
. . 3
⊢ (𝑧 = 𝑥 → sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < )) |
49 | 48 | cbvmptv 5143 |
. 2
⊢ (𝑧 ∈ ℝ ↦
sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))‘((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < )) |
50 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 18, 27, 32, 39, 43, 49 | fourierdlem109 43339 |
1
⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |