Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem105 Structured version   Visualization version   GIF version

Theorem fourierdlem105 46132
Description: A piecewise continuous function is integrable on any closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem105.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem105.t 𝑇 = (𝐵𝐴)
fourierdlem105.m (𝜑𝑀 ∈ ℕ)
fourierdlem105.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem105.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem105.6 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem105.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem105.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem105.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem105.c (𝜑𝐶 ∈ ℝ)
fourierdlem105.d (𝜑𝐷 ∈ (𝐶(,)+∞))
Assertion
Ref Expression
fourierdlem105 (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹𝑥)) ∈ 𝐿1)
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝐶,𝑖,𝑥   𝐶,𝑚,𝑝   𝐷,𝑖,𝑥   𝐷,𝑚,𝑝   𝑖,𝐹,𝑥   𝑥,𝐿   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑖,𝑚,𝑝)   𝑅(𝑖,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem105
Dummy variables 𝑓 𝑗 𝑘 𝑤 𝑦 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem105.p . 2 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2 fourierdlem105.t . 2 𝑇 = (𝐵𝐴)
3 fourierdlem105.m . 2 (𝜑𝑀 ∈ ℕ)
4 fourierdlem105.q . 2 (𝜑𝑄 ∈ (𝑃𝑀))
5 fourierdlem105.f . 2 (𝜑𝐹:ℝ⟶ℂ)
6 fourierdlem105.6 . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
7 fourierdlem105.fcn . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
8 fourierdlem105.r . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
9 fourierdlem105.l . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
10 fourierdlem105.c . 2 (𝜑𝐶 ∈ ℝ)
11 fourierdlem105.d . 2 (𝜑𝐷 ∈ (𝐶(,)+∞))
12 eqid 2740 . 2 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
13 eqid 2740 . 2 ((♯‘({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)
14 oveq1 7455 . . . . . . 7 (𝑤 = 𝑦 → (𝑤 + (𝑗 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
1514eleq1d 2829 . . . . . 6 (𝑤 = 𝑦 → ((𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
1615rexbidv 3185 . . . . 5 (𝑤 = 𝑦 → (∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
17 oveq1 7455 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗 · 𝑇) = (𝑘 · 𝑇))
1817oveq2d 7464 . . . . . . 7 (𝑗 = 𝑘 → (𝑦 + (𝑗 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
1918eleq1d 2829 . . . . . 6 (𝑗 = 𝑘 → ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2019cbvrexvw 3244 . . . . 5 (∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄)
2116, 20bitrdi 287 . . . 4 (𝑤 = 𝑦 → (∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2221cbvrabv 3454 . . 3 {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}
2322uneq2i 4188 . 2 ({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
24 isoeq1 7353 . . 3 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
2524cbviotavw 6533 . 2 (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
26 id 22 . . . 4 (𝑤 = 𝑥𝑤 = 𝑥)
27 oveq2 7456 . . . . . . 7 (𝑤 = 𝑥 → (𝐵𝑤) = (𝐵𝑥))
2827oveq1d 7463 . . . . . 6 (𝑤 = 𝑥 → ((𝐵𝑤) / 𝑇) = ((𝐵𝑥) / 𝑇))
2928fveq2d 6924 . . . . 5 (𝑤 = 𝑥 → (⌊‘((𝐵𝑤) / 𝑇)) = (⌊‘((𝐵𝑥) / 𝑇)))
3029oveq1d 7463 . . . 4 (𝑤 = 𝑥 → ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
3126, 30oveq12d 7466 . . 3 (𝑤 = 𝑥 → (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
3231cbvmptv 5279 . 2 (𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
33 eqeq1 2744 . . . 4 (𝑤 = 𝑦 → (𝑤 = 𝐵𝑦 = 𝐵))
34 id 22 . . . 4 (𝑤 = 𝑦𝑤 = 𝑦)
3533, 34ifbieq2d 4574 . . 3 (𝑤 = 𝑦 → if(𝑤 = 𝐵, 𝐴, 𝑤) = if(𝑦 = 𝐵, 𝐴, 𝑦))
3635cbvmptv 5279 . 2 (𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤)) = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
37 fveq2 6920 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧) = ((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))
3837fveq2d 6924 . . . . . . 7 (𝑧 = 𝑥 → ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧)) = ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥)))
3938breq2d 5178 . . . . . 6 (𝑧 = 𝑥 → ((𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧)) ↔ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))))
4039rabbidv 3451 . . . . 5 (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))})
41 fveq2 6920 . . . . . . 7 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
4241breq1d 5176 . . . . . 6 (𝑗 = 𝑖 → ((𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))))
4342cbvrabv 3454 . . . . 5 {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}
4440, 43eqtrdi 2796 . . . 4 (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))})
4544supeq1d 9515 . . 3 (𝑧 = 𝑥 → sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
4645cbvmptv 5279 . 2 (𝑧 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
471, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 23, 25, 32, 36, 46fourierdlem100 46127 1 (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹𝑥)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  cun 3974  ifcif 4548  {cpr 4650   class class class wbr 5166  cmpt 5249  ran crn 5701  cres 5702  cio 6523  wf 6569  cfv 6573   Isom wiso 6574  (class class class)co 7448  m cmap 8884  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  cz 12639  (,)cioo 13407  (,]cioc 13408  [,]cicc 13410  ...cfz 13567  ..^cfzo 13711  cfl 13841  chash 14379  cnccncf 24921  𝐿1cibl 25671   lim climc 25917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-cn 23256  df-cnp 23257  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-limc 25921
This theorem is referenced by:  fourierdlem107  46134  fourierdlem111  46138
  Copyright terms: Public domain W3C validator