Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem105 Structured version   Visualization version   GIF version

Theorem fourierdlem105 43642
Description: A piecewise continuous function is integrable on any closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem105.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem105.t 𝑇 = (𝐵𝐴)
fourierdlem105.m (𝜑𝑀 ∈ ℕ)
fourierdlem105.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem105.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem105.6 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem105.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem105.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem105.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem105.c (𝜑𝐶 ∈ ℝ)
fourierdlem105.d (𝜑𝐷 ∈ (𝐶(,)+∞))
Assertion
Ref Expression
fourierdlem105 (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹𝑥)) ∈ 𝐿1)
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝐶,𝑖,𝑥   𝐶,𝑚,𝑝   𝐷,𝑖,𝑥   𝐷,𝑚,𝑝   𝑖,𝐹,𝑥   𝑥,𝐿   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑖,𝑚,𝑝)   𝑅(𝑖,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem105
Dummy variables 𝑓 𝑗 𝑘 𝑤 𝑦 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem105.p . 2 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2 fourierdlem105.t . 2 𝑇 = (𝐵𝐴)
3 fourierdlem105.m . 2 (𝜑𝑀 ∈ ℕ)
4 fourierdlem105.q . 2 (𝜑𝑄 ∈ (𝑃𝑀))
5 fourierdlem105.f . 2 (𝜑𝐹:ℝ⟶ℂ)
6 fourierdlem105.6 . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
7 fourierdlem105.fcn . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
8 fourierdlem105.r . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
9 fourierdlem105.l . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
10 fourierdlem105.c . 2 (𝜑𝐶 ∈ ℝ)
11 fourierdlem105.d . 2 (𝜑𝐷 ∈ (𝐶(,)+∞))
12 eqid 2738 . 2 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
13 eqid 2738 . 2 ((♯‘({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)
14 oveq1 7262 . . . . . . 7 (𝑤 = 𝑦 → (𝑤 + (𝑗 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
1514eleq1d 2823 . . . . . 6 (𝑤 = 𝑦 → ((𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
1615rexbidv 3225 . . . . 5 (𝑤 = 𝑦 → (∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
17 oveq1 7262 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗 · 𝑇) = (𝑘 · 𝑇))
1817oveq2d 7271 . . . . . . 7 (𝑗 = 𝑘 → (𝑦 + (𝑗 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
1918eleq1d 2823 . . . . . 6 (𝑗 = 𝑘 → ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2019cbvrexvw 3373 . . . . 5 (∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄)
2116, 20bitrdi 286 . . . 4 (𝑤 = 𝑦 → (∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2221cbvrabv 3416 . . 3 {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}
2322uneq2i 4090 . 2 ({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
24 isoeq1 7168 . . 3 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
2524cbviotavw 6384 . 2 (℩𝑔𝑔 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
26 id 22 . . . 4 (𝑤 = 𝑥𝑤 = 𝑥)
27 oveq2 7263 . . . . . . 7 (𝑤 = 𝑥 → (𝐵𝑤) = (𝐵𝑥))
2827oveq1d 7270 . . . . . 6 (𝑤 = 𝑥 → ((𝐵𝑤) / 𝑇) = ((𝐵𝑥) / 𝑇))
2928fveq2d 6760 . . . . 5 (𝑤 = 𝑥 → (⌊‘((𝐵𝑤) / 𝑇)) = (⌊‘((𝐵𝑥) / 𝑇)))
3029oveq1d 7270 . . . 4 (𝑤 = 𝑥 → ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
3126, 30oveq12d 7273 . . 3 (𝑤 = 𝑥 → (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
3231cbvmptv 5183 . 2 (𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
33 eqeq1 2742 . . . 4 (𝑤 = 𝑦 → (𝑤 = 𝐵𝑦 = 𝐵))
34 id 22 . . . 4 (𝑤 = 𝑦𝑤 = 𝑦)
3533, 34ifbieq2d 4482 . . 3 (𝑤 = 𝑦 → if(𝑤 = 𝐵, 𝐴, 𝑤) = if(𝑦 = 𝐵, 𝐴, 𝑦))
3635cbvmptv 5183 . 2 (𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤)) = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
37 fveq2 6756 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧) = ((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))
3837fveq2d 6760 . . . . . . 7 (𝑧 = 𝑥 → ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧)) = ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥)))
3938breq2d 5082 . . . . . 6 (𝑧 = 𝑥 → ((𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧)) ↔ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))))
4039rabbidv 3404 . . . . 5 (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))})
41 fveq2 6756 . . . . . . 7 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
4241breq1d 5080 . . . . . 6 (𝑗 = 𝑖 → ((𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))))
4342cbvrabv 3416 . . . . 5 {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}
4440, 43eqtrdi 2795 . . . 4 (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))})
4544supeq1d 9135 . . 3 (𝑧 = 𝑥 → sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
4645cbvmptv 5183 . 2 (𝑧 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
471, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 23, 25, 32, 36, 46fourierdlem100 43637 1 (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹𝑥)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  cun 3881  ifcif 4456  {cpr 4560   class class class wbr 5070  cmpt 5153  ran crn 5581  cres 5582  cio 6374  wf 6414  cfv 6418   Isom wiso 6419  (class class class)co 7255  m cmap 8573  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  cz 12249  (,)cioo 13008  (,]cioc 13009  [,]cicc 13011  ...cfz 13168  ..^cfzo 13311  cfl 13438  chash 13972  cnccncf 23945  𝐿1cibl 24686   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-cn 22286  df-cnp 22287  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-limc 24935
This theorem is referenced by:  fourierdlem107  43644  fourierdlem111  43648
  Copyright terms: Public domain W3C validator