![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem106 | Structured version Visualization version GIF version |
Description: For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem106.f | β’ (π β πΉ:ββΆβ) |
fourierdlem106.t | β’ π = (2 Β· Ο) |
fourierdlem106.per | β’ ((π β§ π₯ β β) β (πΉβ(π₯ + π)) = (πΉβπ₯)) |
fourierdlem106.g | β’ πΊ = ((β D πΉ) βΎ (-Ο(,)Ο)) |
fourierdlem106.dmdv | β’ (π β ((-Ο(,)Ο) β dom πΊ) β Fin) |
fourierdlem106.dvcn | β’ (π β πΊ β (dom πΊβcnββ)) |
fourierdlem106.rlim | β’ ((π β§ π₯ β ((-Ο[,)Ο) β dom πΊ)) β ((πΊ βΎ (π₯(,)+β)) limβ π₯) β β ) |
fourierdlem106.llim | β’ ((π β§ π₯ β ((-Ο(,]Ο) β dom πΊ)) β ((πΊ βΎ (-β(,)π₯)) limβ π₯) β β ) |
fourierdlem106.x | β’ (π β π β β) |
Ref | Expression |
---|---|
fourierdlem106 | β’ (π β (((πΉ βΎ (-β(,)π)) limβ π) β β β§ ((πΉ βΎ (π(,)+β)) limβ π) β β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem106.f | . 2 β’ (π β πΉ:ββΆβ) | |
2 | fourierdlem106.t | . 2 β’ π = (2 Β· Ο) | |
3 | fourierdlem106.per | . 2 β’ ((π β§ π₯ β β) β (πΉβ(π₯ + π)) = (πΉβπ₯)) | |
4 | fourierdlem106.g | . 2 β’ πΊ = ((β D πΉ) βΎ (-Ο(,)Ο)) | |
5 | fourierdlem106.dmdv | . 2 β’ (π β ((-Ο(,)Ο) β dom πΊ) β Fin) | |
6 | fourierdlem106.dvcn | . 2 β’ (π β πΊ β (dom πΊβcnββ)) | |
7 | fourierdlem106.rlim | . 2 β’ ((π β§ π₯ β ((-Ο[,)Ο) β dom πΊ)) β ((πΊ βΎ (π₯(,)+β)) limβ π₯) β β ) | |
8 | fourierdlem106.llim | . 2 β’ ((π β§ π₯ β ((-Ο(,]Ο) β dom πΊ)) β ((πΊ βΎ (-β(,)π₯)) limβ π₯) β β ) | |
9 | fourierdlem106.x | . 2 β’ (π β π β β) | |
10 | eqid 2731 | . 2 β’ (π β β β¦ {π€ β (β βm (0...π)) β£ (((π€β0) = -Ο β§ (π€βπ) = Ο) β§ βπ§ β (0..^π)(π€βπ§) < (π€β(π§ + 1)))}) = (π β β β¦ {π€ β (β βm (0...π)) β£ (((π€β0) = -Ο β§ (π€βπ) = Ο) β§ βπ§ β (0..^π)(π€βπ§) < (π€β(π§ + 1)))}) | |
11 | id 22 | . . . 4 β’ (π¦ = π₯ β π¦ = π₯) | |
12 | oveq2 7420 | . . . . . . 7 β’ (π¦ = π₯ β (Ο β π¦) = (Ο β π₯)) | |
13 | 12 | oveq1d 7427 | . . . . . 6 β’ (π¦ = π₯ β ((Ο β π¦) / π) = ((Ο β π₯) / π)) |
14 | 13 | fveq2d 6895 | . . . . 5 β’ (π¦ = π₯ β (ββ((Ο β π¦) / π)) = (ββ((Ο β π₯) / π))) |
15 | 14 | oveq1d 7427 | . . . 4 β’ (π¦ = π₯ β ((ββ((Ο β π¦) / π)) Β· π) = ((ββ((Ο β π₯) / π)) Β· π)) |
16 | 11, 15 | oveq12d 7430 | . . 3 β’ (π¦ = π₯ β (π¦ + ((ββ((Ο β π¦) / π)) Β· π)) = (π₯ + ((ββ((Ο β π₯) / π)) Β· π))) |
17 | 16 | cbvmptv 5261 | . 2 β’ (π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π))) = (π₯ β β β¦ (π₯ + ((ββ((Ο β π₯) / π)) Β· π))) |
18 | eqid 2731 | . 2 β’ ({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ)) = ({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ)) | |
19 | eqid 2731 | . 2 β’ ((β―β({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β 1) = ((β―β({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β 1) | |
20 | isoeq1 7317 | . . 3 β’ (π = π β (π Isom < , < ((0...((β―β({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β 1)), ({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β π Isom < , < ((0...((β―β({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β 1)), ({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))))) | |
21 | 20 | cbviotavw 6503 | . 2 β’ (β©ππ Isom < , < ((0...((β―β({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β 1)), ({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ)))) = (β©ππ Isom < , < ((0...((β―β({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β 1)), ({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ)))) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 17, 18, 19, 21 | fourierdlem102 45223 | 1 β’ (π β (((πΉ βΎ (-β(,)π)) limβ π) β β β§ ((πΉ βΎ (π(,)+β)) limβ π) β β )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 βwral 3060 {crab 3431 β cdif 3945 βͺ cun 3946 β c0 4322 {ctp 4632 class class class wbr 5148 β¦ cmpt 5231 dom cdm 5676 βΎ cres 5678 β©cio 6493 βΆwf 6539 βcfv 6543 Isom wiso 6544 (class class class)co 7412 βm cmap 8824 Fincfn 8943 βcc 11112 βcr 11113 0cc0 11114 1c1 11115 + caddc 11117 Β· cmul 11119 +βcpnf 11250 -βcmnf 11251 < clt 11253 β cmin 11449 -cneg 11450 / cdiv 11876 βcn 12217 2c2 12272 (,)cioo 13329 (,]cioc 13330 [,)cico 13331 [,]cicc 13332 ...cfz 13489 ..^cfzo 13632 βcfl 13760 β―chash 14295 Οcpi 16015 βcnβccncf 24617 limβ climc 25612 D cdv 25613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-oadd 8474 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-xnn0 12550 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ioc 13334 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-fl 13762 df-seq 13972 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15019 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-limsup 15420 df-clim 15437 df-rlim 15438 df-sum 15638 df-ef 16016 df-sin 16018 df-cos 16019 df-pi 16021 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-lp 22861 df-perf 22862 df-cn 22952 df-cnp 22953 df-haus 23040 df-cmp 23112 df-tx 23287 df-hmeo 23480 df-fil 23571 df-fm 23663 df-flim 23664 df-flf 23665 df-xms 24047 df-ms 24048 df-tms 24049 df-cncf 24619 df-limc 25616 df-dv 25617 |
This theorem is referenced by: fourier2 45242 |
Copyright terms: Public domain | W3C validator |