Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem115 Structured version   Visualization version   GIF version

Theorem fourierdlem115 46219
Description: Fourier serier convergence, for piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem115.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem115.t 𝑇 = (2 · π)
fourierdlem115.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem115.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fourierdlem115.dmdv (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
fourierdlem115.dvcn (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
fourierdlem115.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierdlem115.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierdlem115.x (𝜑𝑋 ∈ ℝ)
fourierdlem115.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem115.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem115.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem115.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem115.s 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
Assertion
Ref Expression
fourierdlem115 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹,𝑛,𝑥   𝑘,𝐺,𝑥   𝑘,𝐿   𝑅,𝑘   𝑇,𝑘,𝑥   𝑘,𝑋,𝑛,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑥,𝑛)   𝐵(𝑥,𝑛)   𝑅(𝑥,𝑛)   𝑆(𝑥,𝑘,𝑛)   𝑇(𝑛)   𝐺(𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem fourierdlem115
Dummy variables 𝑧 𝑓 𝑔 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem115.f . . . 4 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem115.t . . . 4 𝑇 = (2 · π)
3 fourierdlem115.per . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fourierdlem115.g . . . 4 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
5 fourierdlem115.dmdv . . . 4 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
6 fourierdlem115.dvcn . . . 4 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
7 fourierdlem115.rlim . . . 4 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
8 fourierdlem115.llim . . . 4 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
9 fourierdlem115.x . . . 4 (𝜑𝑋 ∈ ℝ)
10 fourierdlem115.l . . . 4 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
11 fourierdlem115.r . . . 4 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
12 fourierdlem115.a . . . . 5 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
13 oveq1 7394 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 · 𝑥) = (𝑘 · 𝑥))
1413fveq2d 6862 . . . . . . . . . 10 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑘 · 𝑥)))
1514oveq2d 7403 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑘 · 𝑥))))
1615adantr 480 . . . . . . . 8 ((𝑛 = 𝑘𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑘 · 𝑥))))
1716itgeq2dv 25683 . . . . . . 7 (𝑛 = 𝑘 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥)
1817oveq1d 7402 . . . . . 6 (𝑛 = 𝑘 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π))
1918cbvmptv 5211 . . . . 5 (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑘 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π))
2012, 19eqtri 2752 . . . 4 𝐴 = (𝑘 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π))
21 fourierdlem115.b . . . . 5 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
2213fveq2d 6862 . . . . . . . . . 10 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑘 · 𝑥)))
2322oveq2d 7403 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))))
2423adantr 480 . . . . . . . 8 ((𝑛 = 𝑘𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))))
2524itgeq2dv 25683 . . . . . . 7 (𝑛 = 𝑘 → ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥)
2625oveq1d 7402 . . . . . 6 (𝑛 = 𝑘 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π))
2726cbvmptv 5211 . . . . 5 (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑘 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π))
2821, 27eqtri 2752 . . . 4 𝐵 = (𝑘 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π))
29 fourierdlem115.s . . . 4 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
30 eqid 2729 . . . 4 (𝑘 ∈ ℕ ↦ {𝑤 ∈ (ℝ ↑m (0...𝑘)) ∣ (((𝑤‘0) = -π ∧ (𝑤𝑘) = π) ∧ ∀𝑧 ∈ (0..^𝑘)(𝑤𝑧) < (𝑤‘(𝑧 + 1)))}) = (𝑘 ∈ ℕ ↦ {𝑤 ∈ (ℝ ↑m (0...𝑘)) ∣ (((𝑤‘0) = -π ∧ (𝑤𝑘) = π) ∧ ∀𝑧 ∈ (0..^𝑘)(𝑤𝑧) < (𝑤‘(𝑧 + 1)))})
31 id 22 . . . . . 6 (𝑦 = 𝑥𝑦 = 𝑥)
32 oveq2 7395 . . . . . . . . 9 (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥))
3332oveq1d 7402 . . . . . . . 8 (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇))
3433fveq2d 6862 . . . . . . 7 (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
3534oveq1d 7402 . . . . . 6 (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
3631, 35oveq12d 7405 . . . . 5 (𝑦 = 𝑥 → (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
3736cbvmptv 5211 . . . 4 (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
38 eqid 2729 . . . 4 ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) = ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
39 eqid 2729 . . . 4 ((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1) = ((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)
40 isoeq1 7292 . . . . 5 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) ↔ 𝑓 Isom < , < ((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))))
4140cbviotavw 6472 . . . 4 (℩𝑔𝑔 Isom < , < ((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))))
421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 28, 29, 30, 37, 38, 39, 41fourierdlem114 46218 . . 3 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
4342simpld 494 . 2 (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
44 fveq2 6858 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
45 oveq1 7394 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
4645fveq2d 6862 . . . . . . 7 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
4744, 46oveq12d 7405 . . . . . 6 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
48 fveq2 6858 . . . . . . 7 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
4945fveq2d 6862 . . . . . . 7 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
5048, 49oveq12d 7405 . . . . . 6 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
5147, 50oveq12d 7405 . . . . 5 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
52 nfcv 2891 . . . . 5 𝑘(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
53 nfmpt1 5206 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
5412, 53nfcxfr 2889 . . . . . . . 8 𝑛𝐴
55 nfcv 2891 . . . . . . . 8 𝑛𝑘
5654, 55nffv 6868 . . . . . . 7 𝑛(𝐴𝑘)
57 nfcv 2891 . . . . . . 7 𝑛 ·
58 nfcv 2891 . . . . . . 7 𝑛(cos‘(𝑘 · 𝑋))
5956, 57, 58nfov 7417 . . . . . 6 𝑛((𝐴𝑘) · (cos‘(𝑘 · 𝑋)))
60 nfcv 2891 . . . . . 6 𝑛 +
61 nfmpt1 5206 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
6221, 61nfcxfr 2889 . . . . . . . 8 𝑛𝐵
6362, 55nffv 6868 . . . . . . 7 𝑛(𝐵𝑘)
64 nfcv 2891 . . . . . . 7 𝑛(sin‘(𝑘 · 𝑋))
6563, 57, 64nfov 7417 . . . . . 6 𝑛((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))
6659, 60, 65nfov 7417 . . . . 5 𝑛(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
6751, 52, 66cbvsum 15661 . . . 4 Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
6867oveq2i 7398 . . 3 (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
6942simprd 495 . . 3 (𝜑 → (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
7068, 69eqtrid 2776 . 2 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
7143, 70jca 511 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  cdif 3911  cun 3912  c0 4296  {ctp 4593   class class class wbr 5107  cmpt 5188  dom cdm 5638  cres 5640  cio 6462  wf 6507  cfv 6511   Isom wiso 6512  (class class class)co 7387  m cmap 8799  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  -∞cmnf 11206   < clt 11208  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  (,)cioo 13306  (,]cioc 13307  [,)cico 13308  [,]cicc 13309  ...cfz 13468  ..^cfzo 13615  cfl 13752  seqcseq 13966  chash 14295  cli 15450  Σcsu 15652  sincsin 16029  cosccos 16030  πcpi 16032  cnccncf 24769  citg 25519   lim climc 25763   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-t1 23201  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-ditg 25748  df-limc 25767  df-dv 25768
This theorem is referenced by:  fourierd  46220  fourierclimd  46221
  Copyright terms: Public domain W3C validator