Step | Hyp | Ref
| Expression |
1 | | fourierdlem115.f |
. . . 4
β’ (π β πΉ:ββΆβ) |
2 | | fourierdlem115.t |
. . . 4
β’ π = (2 Β·
Ο) |
3 | | fourierdlem115.per |
. . . 4
β’ ((π β§ π₯ β β) β (πΉβ(π₯ + π)) = (πΉβπ₯)) |
4 | | fourierdlem115.g |
. . . 4
β’ πΊ = ((β D πΉ) βΎ (-Ο(,)Ο)) |
5 | | fourierdlem115.dmdv |
. . . 4
β’ (π β ((-Ο(,)Ο) β
dom πΊ) β
Fin) |
6 | | fourierdlem115.dvcn |
. . . 4
β’ (π β πΊ β (dom πΊβcnββ)) |
7 | | fourierdlem115.rlim |
. . . 4
β’ ((π β§ π₯ β ((-Ο[,)Ο) β dom πΊ)) β ((πΊ βΎ (π₯(,)+β)) limβ π₯) β β
) |
8 | | fourierdlem115.llim |
. . . 4
β’ ((π β§ π₯ β ((-Ο(,]Ο) β dom πΊ)) β ((πΊ βΎ (-β(,)π₯)) limβ π₯) β β
) |
9 | | fourierdlem115.x |
. . . 4
β’ (π β π β β) |
10 | | fourierdlem115.l |
. . . 4
β’ (π β πΏ β ((πΉ βΎ (-β(,)π)) limβ π)) |
11 | | fourierdlem115.r |
. . . 4
β’ (π β π
β ((πΉ βΎ (π(,)+β)) limβ π)) |
12 | | fourierdlem115.a |
. . . . 5
β’ π΄ = (π β β0 β¦
(β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) |
13 | | oveq1 7419 |
. . . . . . . . . . 11
β’ (π = π β (π Β· π₯) = (π Β· π₯)) |
14 | 13 | fveq2d 6896 |
. . . . . . . . . 10
β’ (π = π β (cosβ(π Β· π₯)) = (cosβ(π Β· π₯))) |
15 | 14 | oveq2d 7428 |
. . . . . . . . 9
β’ (π = π β ((πΉβπ₯) Β· (cosβ(π Β· π₯))) = ((πΉβπ₯) Β· (cosβ(π Β· π₯)))) |
16 | 15 | adantr 480 |
. . . . . . . 8
β’ ((π = π β§ π₯ β (-Ο(,)Ο)) β ((πΉβπ₯) Β· (cosβ(π Β· π₯))) = ((πΉβπ₯) Β· (cosβ(π Β· π₯)))) |
17 | 16 | itgeq2dv 25532 |
. . . . . . 7
β’ (π = π β β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ = β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯) |
18 | 17 | oveq1d 7427 |
. . . . . 6
β’ (π = π β (β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο) = (β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) |
19 | 18 | cbvmptv 5262 |
. . . . 5
β’ (π β β0
β¦ (β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) = (π β β0 β¦
(β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) |
20 | 12, 19 | eqtri 2759 |
. . . 4
β’ π΄ = (π β β0 β¦
(β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) |
21 | | fourierdlem115.b |
. . . . 5
β’ π΅ = (π β β β¦
(β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) |
22 | 13 | fveq2d 6896 |
. . . . . . . . . 10
β’ (π = π β (sinβ(π Β· π₯)) = (sinβ(π Β· π₯))) |
23 | 22 | oveq2d 7428 |
. . . . . . . . 9
β’ (π = π β ((πΉβπ₯) Β· (sinβ(π Β· π₯))) = ((πΉβπ₯) Β· (sinβ(π Β· π₯)))) |
24 | 23 | adantr 480 |
. . . . . . . 8
β’ ((π = π β§ π₯ β (-Ο(,)Ο)) β ((πΉβπ₯) Β· (sinβ(π Β· π₯))) = ((πΉβπ₯) Β· (sinβ(π Β· π₯)))) |
25 | 24 | itgeq2dv 25532 |
. . . . . . 7
β’ (π = π β β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ = β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯) |
26 | 25 | oveq1d 7427 |
. . . . . 6
β’ (π = π β (β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο) = (β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) |
27 | 26 | cbvmptv 5262 |
. . . . 5
β’ (π β β β¦
(β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) = (π β β β¦
(β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) |
28 | 21, 27 | eqtri 2759 |
. . . 4
β’ π΅ = (π β β β¦
(β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) |
29 | | fourierdlem115.s |
. . . 4
β’ π = (π β β β¦ (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) |
30 | | eqid 2731 |
. . . 4
β’ (π β β β¦ {π€ β (β
βm (0...π))
β£ (((π€β0) =
-Ο β§ (π€βπ) = Ο) β§ βπ§ β (0..^π)(π€βπ§) < (π€β(π§ + 1)))}) = (π β β β¦ {π€ β (β βm
(0...π)) β£ (((π€β0) = -Ο β§ (π€βπ) = Ο) β§ βπ§ β (0..^π)(π€βπ§) < (π€β(π§ + 1)))}) |
31 | | id 22 |
. . . . . 6
β’ (π¦ = π₯ β π¦ = π₯) |
32 | | oveq2 7420 |
. . . . . . . . 9
β’ (π¦ = π₯ β (Ο β π¦) = (Ο β π₯)) |
33 | 32 | oveq1d 7427 |
. . . . . . . 8
β’ (π¦ = π₯ β ((Ο β π¦) / π) = ((Ο β π₯) / π)) |
34 | 33 | fveq2d 6896 |
. . . . . . 7
β’ (π¦ = π₯ β (ββ((Ο β π¦) / π)) = (ββ((Ο β π₯) / π))) |
35 | 34 | oveq1d 7427 |
. . . . . 6
β’ (π¦ = π₯ β ((ββ((Ο β π¦) / π)) Β· π) = ((ββ((Ο β π₯) / π)) Β· π)) |
36 | 31, 35 | oveq12d 7430 |
. . . . 5
β’ (π¦ = π₯ β (π¦ + ((ββ((Ο β π¦) / π)) Β· π)) = (π₯ + ((ββ((Ο β π₯) / π)) Β· π))) |
37 | 36 | cbvmptv 5262 |
. . . 4
β’ (π¦ β β β¦ (π¦ + ((ββ((Ο
β π¦) / π)) Β· π))) = (π₯ β β β¦ (π₯ + ((ββ((Ο β π₯) / π)) Β· π))) |
38 | | eqid 2731 |
. . . 4
β’ ({-Ο,
Ο, ((π¦ β β
β¦ (π¦ +
((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ)) = ({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο
β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ)) |
39 | | eqid 2731 |
. . . 4
β’
((β―β({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β 1) =
((β―β({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β 1) |
40 | | isoeq1 7317 |
. . . . 5
β’ (π = π β (π Isom < , <
((0...((β―β({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β 1)), ({-Ο, Ο,
((π¦ β β β¦
(π¦ + ((ββ((Ο
β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β π Isom < , <
((0...((β―β({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β 1)), ({-Ο, Ο,
((π¦ β β β¦
(π¦ + ((ββ((Ο
β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))))) |
41 | 40 | cbviotavw 6504 |
. . . 4
β’
(β©ππ Isom < , <
((0...((β―β({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β 1)), ({-Ο, Ο,
((π¦ β β β¦
(π¦ + ((ββ((Ο
β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ)))) = (β©ππ Isom < , <
((0...((β―β({-Ο, Ο, ((π¦ β β β¦ (π¦ + ((ββ((Ο β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ))) β 1)), ({-Ο, Ο,
((π¦ β β β¦
(π¦ + ((ββ((Ο
β π¦) / π)) Β· π)))βπ)} βͺ ((-Ο[,]Ο) β dom πΊ)))) |
42 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 20, 28, 29, 30, 37, 38, 39, 41 | fourierdlem114 45236 |
. . 3
β’ (π β (seq1( + , π) β (((πΏ + π
) / 2) β ((π΄β0) / 2)) β§ (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = ((πΏ + π
) / 2))) |
43 | 42 | simpld 494 |
. 2
β’ (π β seq1( + , π) β (((πΏ + π
) / 2) β ((π΄β0) / 2))) |
44 | | nfcv 2902 |
. . . . 5
β’
β²π(((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π)))) |
45 | | nfmpt1 5257 |
. . . . . . . . 9
β’
β²π(π β β0 β¦
(β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) |
46 | 12, 45 | nfcxfr 2900 |
. . . . . . . 8
β’
β²ππ΄ |
47 | | nfcv 2902 |
. . . . . . . 8
β’
β²ππ |
48 | 46, 47 | nffv 6902 |
. . . . . . 7
β’
β²π(π΄βπ) |
49 | | nfcv 2902 |
. . . . . . 7
β’
β²π
Β· |
50 | | nfcv 2902 |
. . . . . . 7
β’
β²π(cosβ(π Β· π)) |
51 | 48, 49, 50 | nfov 7442 |
. . . . . 6
β’
β²π((π΄βπ) Β· (cosβ(π Β· π))) |
52 | | nfcv 2902 |
. . . . . 6
β’
β²π
+ |
53 | | nfmpt1 5257 |
. . . . . . . . 9
β’
β²π(π β β β¦
(β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) |
54 | 21, 53 | nfcxfr 2900 |
. . . . . . . 8
β’
β²ππ΅ |
55 | 54, 47 | nffv 6902 |
. . . . . . 7
β’
β²π(π΅βπ) |
56 | | nfcv 2902 |
. . . . . . 7
β’
β²π(sinβ(π Β· π)) |
57 | 55, 49, 56 | nfov 7442 |
. . . . . 6
β’
β²π((π΅βπ) Β· (sinβ(π Β· π))) |
58 | 51, 52, 57 | nfov 7442 |
. . . . 5
β’
β²π(((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π)))) |
59 | | fveq2 6892 |
. . . . . . 7
β’ (π = π β (π΄βπ) = (π΄βπ)) |
60 | | oveq1 7419 |
. . . . . . . 8
β’ (π = π β (π Β· π) = (π Β· π)) |
61 | 60 | fveq2d 6896 |
. . . . . . 7
β’ (π = π β (cosβ(π Β· π)) = (cosβ(π Β· π))) |
62 | 59, 61 | oveq12d 7430 |
. . . . . 6
β’ (π = π β ((π΄βπ) Β· (cosβ(π Β· π))) = ((π΄βπ) Β· (cosβ(π Β· π)))) |
63 | | fveq2 6892 |
. . . . . . 7
β’ (π = π β (π΅βπ) = (π΅βπ)) |
64 | 60 | fveq2d 6896 |
. . . . . . 7
β’ (π = π β (sinβ(π Β· π)) = (sinβ(π Β· π))) |
65 | 63, 64 | oveq12d 7430 |
. . . . . 6
β’ (π = π β ((π΅βπ) Β· (sinβ(π Β· π))) = ((π΅βπ) Β· (sinβ(π Β· π)))) |
66 | 62, 65 | oveq12d 7430 |
. . . . 5
β’ (π = π β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π)))) = (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) |
67 | 44, 58, 66 | cbvsumi 15648 |
. . . 4
β’
Ξ£π β
β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π)))) = Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π)))) |
68 | 67 | oveq2i 7423 |
. . 3
β’ (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) |
69 | 42 | simprd 495 |
. . 3
β’ (π β (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = ((πΏ + π
) / 2)) |
70 | 68, 69 | eqtrid 2783 |
. 2
β’ (π β (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = ((πΏ + π
) / 2)) |
71 | 43, 70 | jca 511 |
1
β’ (π β (seq1( + , π) β (((πΏ + π
) / 2) β ((π΄β0) / 2)) β§ (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = ((πΏ + π
) / 2))) |