Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem115 Structured version   Visualization version   GIF version

Theorem fourierdlem115 43762
Description: Fourier serier convergence, for piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem115.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem115.t 𝑇 = (2 · π)
fourierdlem115.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem115.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fourierdlem115.dmdv (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
fourierdlem115.dvcn (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
fourierdlem115.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierdlem115.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierdlem115.x (𝜑𝑋 ∈ ℝ)
fourierdlem115.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem115.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem115.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem115.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem115.s 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
Assertion
Ref Expression
fourierdlem115 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹,𝑛,𝑥   𝑘,𝐺,𝑥   𝑘,𝐿   𝑅,𝑘   𝑇,𝑘,𝑥   𝑘,𝑋,𝑛,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑥,𝑛)   𝐵(𝑥,𝑛)   𝑅(𝑥,𝑛)   𝑆(𝑥,𝑘,𝑛)   𝑇(𝑛)   𝐺(𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem fourierdlem115
Dummy variables 𝑧 𝑓 𝑔 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem115.f . . . 4 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem115.t . . . 4 𝑇 = (2 · π)
3 fourierdlem115.per . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fourierdlem115.g . . . 4 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
5 fourierdlem115.dmdv . . . 4 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
6 fourierdlem115.dvcn . . . 4 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
7 fourierdlem115.rlim . . . 4 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
8 fourierdlem115.llim . . . 4 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
9 fourierdlem115.x . . . 4 (𝜑𝑋 ∈ ℝ)
10 fourierdlem115.l . . . 4 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
11 fourierdlem115.r . . . 4 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
12 fourierdlem115.a . . . . 5 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
13 oveq1 7282 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 · 𝑥) = (𝑘 · 𝑥))
1413fveq2d 6778 . . . . . . . . . 10 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑘 · 𝑥)))
1514oveq2d 7291 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑘 · 𝑥))))
1615adantr 481 . . . . . . . 8 ((𝑛 = 𝑘𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑘 · 𝑥))))
1716itgeq2dv 24946 . . . . . . 7 (𝑛 = 𝑘 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥)
1817oveq1d 7290 . . . . . 6 (𝑛 = 𝑘 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π))
1918cbvmptv 5187 . . . . 5 (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑘 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π))
2012, 19eqtri 2766 . . . 4 𝐴 = (𝑘 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π))
21 fourierdlem115.b . . . . 5 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
2213fveq2d 6778 . . . . . . . . . 10 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑘 · 𝑥)))
2322oveq2d 7291 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))))
2423adantr 481 . . . . . . . 8 ((𝑛 = 𝑘𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))))
2524itgeq2dv 24946 . . . . . . 7 (𝑛 = 𝑘 → ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥)
2625oveq1d 7290 . . . . . 6 (𝑛 = 𝑘 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π))
2726cbvmptv 5187 . . . . 5 (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑘 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π))
2821, 27eqtri 2766 . . . 4 𝐵 = (𝑘 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π))
29 fourierdlem115.s . . . 4 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
30 eqid 2738 . . . 4 (𝑘 ∈ ℕ ↦ {𝑤 ∈ (ℝ ↑m (0...𝑘)) ∣ (((𝑤‘0) = -π ∧ (𝑤𝑘) = π) ∧ ∀𝑧 ∈ (0..^𝑘)(𝑤𝑧) < (𝑤‘(𝑧 + 1)))}) = (𝑘 ∈ ℕ ↦ {𝑤 ∈ (ℝ ↑m (0...𝑘)) ∣ (((𝑤‘0) = -π ∧ (𝑤𝑘) = π) ∧ ∀𝑧 ∈ (0..^𝑘)(𝑤𝑧) < (𝑤‘(𝑧 + 1)))})
31 id 22 . . . . . 6 (𝑦 = 𝑥𝑦 = 𝑥)
32 oveq2 7283 . . . . . . . . 9 (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥))
3332oveq1d 7290 . . . . . . . 8 (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇))
3433fveq2d 6778 . . . . . . 7 (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
3534oveq1d 7290 . . . . . 6 (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
3631, 35oveq12d 7293 . . . . 5 (𝑦 = 𝑥 → (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
3736cbvmptv 5187 . . . 4 (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
38 eqid 2738 . . . 4 ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) = ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
39 eqid 2738 . . . 4 ((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1) = ((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)
40 isoeq1 7188 . . . . 5 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) ↔ 𝑓 Isom < , < ((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))))
4140cbviotavw 6399 . . . 4 (℩𝑔𝑔 Isom < , < ((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))))
421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 28, 29, 30, 37, 38, 39, 41fourierdlem114 43761 . . 3 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
4342simpld 495 . 2 (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
44 nfcv 2907 . . . . 5 𝑘(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
45 nfmpt1 5182 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
4612, 45nfcxfr 2905 . . . . . . . 8 𝑛𝐴
47 nfcv 2907 . . . . . . . 8 𝑛𝑘
4846, 47nffv 6784 . . . . . . 7 𝑛(𝐴𝑘)
49 nfcv 2907 . . . . . . 7 𝑛 ·
50 nfcv 2907 . . . . . . 7 𝑛(cos‘(𝑘 · 𝑋))
5148, 49, 50nfov 7305 . . . . . 6 𝑛((𝐴𝑘) · (cos‘(𝑘 · 𝑋)))
52 nfcv 2907 . . . . . 6 𝑛 +
53 nfmpt1 5182 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
5421, 53nfcxfr 2905 . . . . . . . 8 𝑛𝐵
5554, 47nffv 6784 . . . . . . 7 𝑛(𝐵𝑘)
56 nfcv 2907 . . . . . . 7 𝑛(sin‘(𝑘 · 𝑋))
5755, 49, 56nfov 7305 . . . . . 6 𝑛((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))
5851, 52, 57nfov 7305 . . . . 5 𝑛(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
59 fveq2 6774 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
60 oveq1 7282 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
6160fveq2d 6778 . . . . . . 7 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
6259, 61oveq12d 7293 . . . . . 6 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
63 fveq2 6774 . . . . . . 7 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
6460fveq2d 6778 . . . . . . 7 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
6563, 64oveq12d 7293 . . . . . 6 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
6662, 65oveq12d 7293 . . . . 5 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
6744, 58, 66cbvsumi 15409 . . . 4 Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
6867oveq2i 7286 . . 3 (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
6942simprd 496 . . 3 (𝜑 → (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
7068, 69eqtrid 2790 . 2 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
7143, 70jca 512 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  cdif 3884  cun 3885  c0 4256  {ctp 4565   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  cio 6389  wf 6429  cfv 6433   Isom wiso 6434  (class class class)co 7275  m cmap 8615  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  -∞cmnf 11007   < clt 11009  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  (,)cioo 13079  (,]cioc 13080  [,)cico 13081  [,]cicc 13082  ...cfz 13239  ..^cfzo 13382  cfl 13510  seqcseq 13721  chash 14044  cli 15193  Σcsu 15397  sincsin 15773  cosccos 15774  πcpi 15776  cnccncf 24039  citg 24782   lim climc 25026   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-t1 22465  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-ditg 25011  df-limc 25030  df-dv 25031
This theorem is referenced by:  fourierd  43763  fourierclimd  43764
  Copyright terms: Public domain W3C validator