Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem115 Structured version   Visualization version   GIF version

Theorem fourierdlem115 46202
Description: Fourier serier convergence, for piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem115.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem115.t 𝑇 = (2 · π)
fourierdlem115.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem115.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fourierdlem115.dmdv (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
fourierdlem115.dvcn (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
fourierdlem115.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierdlem115.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierdlem115.x (𝜑𝑋 ∈ ℝ)
fourierdlem115.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem115.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem115.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem115.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem115.s 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
Assertion
Ref Expression
fourierdlem115 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹,𝑛,𝑥   𝑘,𝐺,𝑥   𝑘,𝐿   𝑅,𝑘   𝑇,𝑘,𝑥   𝑘,𝑋,𝑛,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑥,𝑛)   𝐵(𝑥,𝑛)   𝑅(𝑥,𝑛)   𝑆(𝑥,𝑘,𝑛)   𝑇(𝑛)   𝐺(𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem fourierdlem115
Dummy variables 𝑧 𝑓 𝑔 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem115.f . . . 4 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem115.t . . . 4 𝑇 = (2 · π)
3 fourierdlem115.per . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fourierdlem115.g . . . 4 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
5 fourierdlem115.dmdv . . . 4 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
6 fourierdlem115.dvcn . . . 4 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
7 fourierdlem115.rlim . . . 4 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
8 fourierdlem115.llim . . . 4 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
9 fourierdlem115.x . . . 4 (𝜑𝑋 ∈ ℝ)
10 fourierdlem115.l . . . 4 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
11 fourierdlem115.r . . . 4 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
12 fourierdlem115.a . . . . 5 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
13 oveq1 7356 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 · 𝑥) = (𝑘 · 𝑥))
1413fveq2d 6826 . . . . . . . . . 10 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑘 · 𝑥)))
1514oveq2d 7365 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑘 · 𝑥))))
1615adantr 480 . . . . . . . 8 ((𝑛 = 𝑘𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑘 · 𝑥))))
1716itgeq2dv 25681 . . . . . . 7 (𝑛 = 𝑘 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥)
1817oveq1d 7364 . . . . . 6 (𝑛 = 𝑘 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π))
1918cbvmptv 5196 . . . . 5 (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑘 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π))
2012, 19eqtri 2752 . . . 4 𝐴 = (𝑘 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π))
21 fourierdlem115.b . . . . 5 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
2213fveq2d 6826 . . . . . . . . . 10 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑘 · 𝑥)))
2322oveq2d 7365 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))))
2423adantr 480 . . . . . . . 8 ((𝑛 = 𝑘𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))))
2524itgeq2dv 25681 . . . . . . 7 (𝑛 = 𝑘 → ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥)
2625oveq1d 7364 . . . . . 6 (𝑛 = 𝑘 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π))
2726cbvmptv 5196 . . . . 5 (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑘 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π))
2821, 27eqtri 2752 . . . 4 𝐵 = (𝑘 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π))
29 fourierdlem115.s . . . 4 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
30 eqid 2729 . . . 4 (𝑘 ∈ ℕ ↦ {𝑤 ∈ (ℝ ↑m (0...𝑘)) ∣ (((𝑤‘0) = -π ∧ (𝑤𝑘) = π) ∧ ∀𝑧 ∈ (0..^𝑘)(𝑤𝑧) < (𝑤‘(𝑧 + 1)))}) = (𝑘 ∈ ℕ ↦ {𝑤 ∈ (ℝ ↑m (0...𝑘)) ∣ (((𝑤‘0) = -π ∧ (𝑤𝑘) = π) ∧ ∀𝑧 ∈ (0..^𝑘)(𝑤𝑧) < (𝑤‘(𝑧 + 1)))})
31 id 22 . . . . . 6 (𝑦 = 𝑥𝑦 = 𝑥)
32 oveq2 7357 . . . . . . . . 9 (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥))
3332oveq1d 7364 . . . . . . . 8 (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇))
3433fveq2d 6826 . . . . . . 7 (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
3534oveq1d 7364 . . . . . 6 (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
3631, 35oveq12d 7367 . . . . 5 (𝑦 = 𝑥 → (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
3736cbvmptv 5196 . . . 4 (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
38 eqid 2729 . . . 4 ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) = ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
39 eqid 2729 . . . 4 ((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1) = ((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)
40 isoeq1 7254 . . . . 5 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) ↔ 𝑓 Isom < , < ((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))))
4140cbviotavw 6446 . . . 4 (℩𝑔𝑔 Isom < , < ((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))))
421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 28, 29, 30, 37, 38, 39, 41fourierdlem114 46201 . . 3 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
4342simpld 494 . 2 (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
44 fveq2 6822 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
45 oveq1 7356 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
4645fveq2d 6826 . . . . . . 7 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
4744, 46oveq12d 7367 . . . . . 6 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
48 fveq2 6822 . . . . . . 7 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
4945fveq2d 6826 . . . . . . 7 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
5048, 49oveq12d 7367 . . . . . 6 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
5147, 50oveq12d 7367 . . . . 5 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
52 nfcv 2891 . . . . 5 𝑘(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
53 nfmpt1 5191 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
5412, 53nfcxfr 2889 . . . . . . . 8 𝑛𝐴
55 nfcv 2891 . . . . . . . 8 𝑛𝑘
5654, 55nffv 6832 . . . . . . 7 𝑛(𝐴𝑘)
57 nfcv 2891 . . . . . . 7 𝑛 ·
58 nfcv 2891 . . . . . . 7 𝑛(cos‘(𝑘 · 𝑋))
5956, 57, 58nfov 7379 . . . . . 6 𝑛((𝐴𝑘) · (cos‘(𝑘 · 𝑋)))
60 nfcv 2891 . . . . . 6 𝑛 +
61 nfmpt1 5191 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
6221, 61nfcxfr 2889 . . . . . . . 8 𝑛𝐵
6362, 55nffv 6832 . . . . . . 7 𝑛(𝐵𝑘)
64 nfcv 2891 . . . . . . 7 𝑛(sin‘(𝑘 · 𝑋))
6563, 57, 64nfov 7379 . . . . . 6 𝑛((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))
6659, 60, 65nfov 7379 . . . . 5 𝑛(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
6751, 52, 66cbvsum 15602 . . . 4 Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
6867oveq2i 7360 . . 3 (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
6942simprd 495 . . 3 (𝜑 → (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
7068, 69eqtrid 2776 . 2 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
7143, 70jca 511 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3394  cdif 3900  cun 3901  c0 4284  {ctp 4581   class class class wbr 5092  cmpt 5173  dom cdm 5619  cres 5621  cio 6436  wf 6478  cfv 6482   Isom wiso 6483  (class class class)co 7349  m cmap 8753  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  +∞cpnf 11146  -∞cmnf 11147   < clt 11149  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  (,)cioo 13248  (,]cioc 13249  [,)cico 13250  [,]cicc 13251  ...cfz 13410  ..^cfzo 13557  cfl 13694  seqcseq 13908  chash 14237  cli 15391  Σcsu 15593  sincsin 15970  cosccos 15971  πcpi 15973  cnccncf 24767  citg 25517   lim climc 25761   D cdv 25762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-symdif 4204  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-t1 23199  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-ibl 25521  df-itg 25522  df-0p 25569  df-ditg 25746  df-limc 25765  df-dv 25766
This theorem is referenced by:  fourierd  46203  fourierclimd  46204
  Copyright terms: Public domain W3C validator