Step | Hyp | Ref
| Expression |
1 | | fourierdlem115.f |
. . . 4
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
2 | | fourierdlem115.t |
. . . 4
⊢ 𝑇 = (2 ·
π) |
3 | | fourierdlem115.per |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
4 | | fourierdlem115.g |
. . . 4
⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
5 | | fourierdlem115.dmdv |
. . . 4
⊢ (𝜑 → ((-π(,)π) ∖
dom 𝐺) ∈
Fin) |
6 | | fourierdlem115.dvcn |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
7 | | fourierdlem115.rlim |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
8 | | fourierdlem115.llim |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
9 | | fourierdlem115.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ℝ) |
10 | | fourierdlem115.l |
. . . 4
⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
11 | | fourierdlem115.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
12 | | fourierdlem115.a |
. . . . 5
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦
(∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
13 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑛 · 𝑥) = (𝑘 · 𝑥)) |
14 | 13 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑘 · 𝑥))) |
15 | 14 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹‘𝑥) · (cos‘(𝑘 · 𝑥)))) |
16 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝑛 = 𝑘 ∧ 𝑥 ∈ (-π(,)π)) → ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹‘𝑥) · (cos‘(𝑘 · 𝑥)))) |
17 | 16 | itgeq2dv 24851 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥) |
18 | 17 | oveq1d 7270 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π)) |
19 | 18 | cbvmptv 5183 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑘 ∈ ℕ0 ↦
(∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π)) |
20 | 12, 19 | eqtri 2766 |
. . . 4
⊢ 𝐴 = (𝑘 ∈ ℕ0 ↦
(∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π)) |
21 | | fourierdlem115.b |
. . . . 5
⊢ 𝐵 = (𝑛 ∈ ℕ ↦
(∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
22 | 13 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑘 · 𝑥))) |
23 | 22 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹‘𝑥) · (sin‘(𝑘 · 𝑥)))) |
24 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝑛 = 𝑘 ∧ 𝑥 ∈ (-π(,)π)) → ((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹‘𝑥) · (sin‘(𝑘 · 𝑥)))) |
25 | 24 | itgeq2dv 24851 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥) |
26 | 25 | oveq1d 7270 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π)) |
27 | 26 | cbvmptv 5183 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦
(∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑘 ∈ ℕ ↦
(∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π)) |
28 | 21, 27 | eqtri 2766 |
. . . 4
⊢ 𝐵 = (𝑘 ∈ ℕ ↦
(∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π)) |
29 | | fourierdlem115.s |
. . . 4
⊢ 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
30 | | eqid 2738 |
. . . 4
⊢ (𝑘 ∈ ℕ ↦ {𝑤 ∈ (ℝ
↑m (0...𝑘))
∣ (((𝑤‘0) =
-π ∧ (𝑤‘𝑘) = π) ∧ ∀𝑧 ∈ (0..^𝑘)(𝑤‘𝑧) < (𝑤‘(𝑧 + 1)))}) = (𝑘 ∈ ℕ ↦ {𝑤 ∈ (ℝ ↑m
(0...𝑘)) ∣ (((𝑤‘0) = -π ∧ (𝑤‘𝑘) = π) ∧ ∀𝑧 ∈ (0..^𝑘)(𝑤‘𝑧) < (𝑤‘(𝑧 + 1)))}) |
31 | | id 22 |
. . . . . 6
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) |
32 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥)) |
33 | 32 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇)) |
34 | 33 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇))) |
35 | 34 | oveq1d 7270 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)) |
36 | 31, 35 | oveq12d 7273 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))) |
37 | 36 | cbvmptv 5183 |
. . . 4
⊢ (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π
− 𝑦) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))) |
38 | | eqid 2738 |
. . . 4
⊢ ({-π,
π, ((𝑦 ∈ ℝ
↦ (𝑦 +
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) = ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π
− 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) |
39 | | eqid 2738 |
. . . 4
⊢
((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1) =
((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1) |
40 | | isoeq1 7168 |
. . . . 5
⊢ (𝑔 = 𝑓 → (𝑔 Isom < , <
((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π,
((𝑦 ∈ ℝ ↦
(𝑦 + ((⌊‘((π
− 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) ↔ 𝑓 Isom < , <
((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π,
((𝑦 ∈ ℝ ↦
(𝑦 + ((⌊‘((π
− 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))))) |
41 | 40 | cbviotavw 6384 |
. . . 4
⊢
(℩𝑔𝑔 Isom < , <
((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π,
((𝑦 ∈ ℝ ↦
(𝑦 + ((⌊‘((π
− 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))) = (℩𝑓𝑓 Isom < , <
((0...((♯‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π,
((𝑦 ∈ ℝ ↦
(𝑦 + ((⌊‘((π
− 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))) |
42 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 20, 28, 29, 30, 37, 38, 39, 41 | fourierdlem114 43651 |
. . 3
⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) |
43 | 42 | simpld 494 |
. 2
⊢ (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) |
44 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑘(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))) |
45 | | nfmpt1 5178 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝑛 ∈ ℕ0 ↦
(∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
46 | 12, 45 | nfcxfr 2904 |
. . . . . . . 8
⊢
Ⅎ𝑛𝐴 |
47 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑛𝑘 |
48 | 46, 47 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑛(𝐴‘𝑘) |
49 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑛
· |
50 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑛(cos‘(𝑘 · 𝑋)) |
51 | 48, 49, 50 | nfov 7285 |
. . . . . 6
⊢
Ⅎ𝑛((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) |
52 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑛
+ |
53 | | nfmpt1 5178 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝑛 ∈ ℕ ↦
(∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
54 | 21, 53 | nfcxfr 2904 |
. . . . . . . 8
⊢
Ⅎ𝑛𝐵 |
55 | 54, 47 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑛(𝐵‘𝑘) |
56 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑛(sin‘(𝑘 · 𝑋)) |
57 | 55, 49, 56 | nfov 7285 |
. . . . . 6
⊢
Ⅎ𝑛((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))) |
58 | 51, 52, 57 | nfov 7285 |
. . . . 5
⊢
Ⅎ𝑛(((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) |
59 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐴‘𝑛) = (𝐴‘𝑘)) |
60 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋)) |
61 | 60 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋))) |
62 | 59, 61 | oveq12d 7273 |
. . . . . 6
⊢ (𝑛 = 𝑘 → ((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋)))) |
63 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐵‘𝑛) = (𝐵‘𝑘)) |
64 | 60 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋))) |
65 | 63, 64 | oveq12d 7273 |
. . . . . 6
⊢ (𝑛 = 𝑘 → ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) |
66 | 62, 65 | oveq12d 7273 |
. . . . 5
⊢ (𝑛 = 𝑘 → (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
67 | 44, 58, 66 | cbvsumi 15337 |
. . . 4
⊢
Σ𝑛 ∈
ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ ℕ (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) |
68 | 67 | oveq2i 7266 |
. . 3
⊢ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
69 | 42 | simprd 495 |
. . 3
⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) = ((𝐿 + 𝑅) / 2)) |
70 | 68, 69 | syl5eq 2791 |
. 2
⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)) |
71 | 43, 70 | jca 511 |
1
⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) |