Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem108 Structured version   Visualization version   GIF version

Theorem fourierdlem108 42506
 Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 42490 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem108.a (𝜑𝐴 ∈ ℝ)
fourierdlem108.b (𝜑𝐵 ∈ ℝ)
fourierdlem108.t 𝑇 = (𝐵𝐴)
fourierdlem108.x (𝜑𝑋 ∈ ℝ+)
fourierdlem108.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem108.m (𝜑𝑀 ∈ ℕ)
fourierdlem108.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem108.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem108.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem108.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem108.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem108.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem108 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑖,𝐹,𝑥   𝑥,𝐿   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑖,𝑋,𝑥   𝑚,𝑋,𝑝   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑖,𝑚,𝑝)   𝑅(𝑖,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem108
Dummy variables 𝑓 𝑔 𝑘 𝑤 𝑦 𝑗 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem108.a . 2 (𝜑𝐴 ∈ ℝ)
2 fourierdlem108.b . 2 (𝜑𝐵 ∈ ℝ)
3 fourierdlem108.t . 2 𝑇 = (𝐵𝐴)
4 fourierdlem108.x . 2 (𝜑𝑋 ∈ ℝ+)
5 fourierdlem108.p . 2 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
6 fourierdlem108.m . 2 (𝜑𝑀 ∈ ℕ)
7 fourierdlem108.q . 2 (𝜑𝑄 ∈ (𝑃𝑀))
8 fourierdlem108.f . 2 (𝜑𝐹:ℝ⟶ℂ)
9 fourierdlem108.fper . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
10 fourierdlem108.fcn . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
11 fourierdlem108.r . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
12 fourierdlem108.l . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
13 eqid 2824 . 2 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
14 oveq1 7166 . . . . . 6 (𝑤 = 𝑦 → (𝑤 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
1514eleq1d 2900 . . . . 5 (𝑤 = 𝑦 → ((𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
1615rexbidv 3300 . . . 4 (𝑤 = 𝑦 → (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
1716cbvrabv 3494 . . 3 {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}
1817uneq2i 4139 . 2 ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
19 oveq1 7166 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑙 · 𝑇) = (𝑘 · 𝑇))
2019oveq2d 7175 . . . . . . . . 9 (𝑙 = 𝑘 → (𝑤 + (𝑙 · 𝑇)) = (𝑤 + (𝑘 · 𝑇)))
2120eleq1d 2900 . . . . . . . 8 (𝑙 = 𝑘 → ((𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2221cbvrexvw 3453 . . . . . . 7 (∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄)
2322rgenw 3153 . . . . . 6 𝑤 ∈ ((𝐴𝑋)[,]𝐴)(∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄)
24 rabbi 3386 . . . . . 6 (∀𝑤 ∈ ((𝐴𝑋)[,]𝐴)(∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄) ↔ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
2523, 24mpbi 232 . . . . 5 {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}
2625uneq2i 4139 . . . 4 ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
2726fveq2i 6676 . . 3 (♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
2827oveq1i 7169 . 2 ((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
29 isoeq5 7077 . . . . 5 (({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3026, 29ax-mp 5 . . . 4 (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
31 isoeq1 7073 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3230, 31syl5bb 285 . . 3 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3332cbviotavw 6325 . 2 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
34 id 22 . . . 4 (𝑤 = 𝑥𝑤 = 𝑥)
35 oveq2 7167 . . . . . . 7 (𝑤 = 𝑥 → (𝐵𝑤) = (𝐵𝑥))
3635oveq1d 7174 . . . . . 6 (𝑤 = 𝑥 → ((𝐵𝑤) / 𝑇) = ((𝐵𝑥) / 𝑇))
3736fveq2d 6677 . . . . 5 (𝑤 = 𝑥 → (⌊‘((𝐵𝑤) / 𝑇)) = (⌊‘((𝐵𝑥) / 𝑇)))
3837oveq1d 7174 . . . 4 (𝑤 = 𝑥 → ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
3934, 38oveq12d 7177 . . 3 (𝑤 = 𝑥 → (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
4039cbvmptv 5172 . 2 (𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
41 eqeq1 2828 . . . 4 (𝑤 = 𝑦 → (𝑤 = 𝐵𝑦 = 𝐵))
42 id 22 . . . 4 (𝑤 = 𝑦𝑤 = 𝑦)
4341, 42ifbieq2d 4495 . . 3 (𝑤 = 𝑦 → if(𝑤 = 𝐵, 𝐴, 𝑤) = if(𝑦 = 𝐵, 𝐴, 𝑦))
4443cbvmptv 5172 . 2 (𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤)) = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
45 fveq2 6673 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧) = ((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))
4645fveq2d 6677 . . . . . . 7 (𝑧 = 𝑥 → ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧)) = ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥)))
4746breq2d 5081 . . . . . 6 (𝑧 = 𝑥 → ((𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧)) ↔ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))))
4847rabbidv 3483 . . . . 5 (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))})
49 fveq2 6673 . . . . . . 7 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
5049breq1d 5079 . . . . . 6 (𝑗 = 𝑖 → ((𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))))
5150cbvrabv 3494 . . . . 5 {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}
5248, 51syl6eq 2875 . . . 4 (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))})
5352supeq1d 8913 . . 3 (𝑧 = 𝑥 → sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
5453cbvmptv 5172 . 2 (𝑧 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
551, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 28, 33, 40, 44, 54fourierdlem107 42505 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1536   ∈ wcel 2113  ∀wral 3141  ∃wrex 3142  {crab 3145   ∪ cun 3937  ifcif 4470  {cpr 4572   class class class wbr 5069   ↦ cmpt 5149  ran crn 5559   ↾ cres 5560  ℩cio 6315  ⟶wf 6354  ‘cfv 6358   Isom wiso 6359  (class class class)co 7159   ↑m cmap 8409  supcsup 8907  ℂcc 10538  ℝcr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678   ≤ cle 10679   − cmin 10873   / cdiv 11300  ℕcn 11641  ℤcz 11984  ℝ+crp 12392  (,)cioo 12741  (,]cioc 12742  [,]cicc 12744  ...cfz 12895  ..^cfzo 13036  ⌊cfl 13163  ♯chash 13693  –cn→ccncf 23487  ∫citg 24222   limℂ climc 24463 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cc 9860  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-symdif 4222  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-omul 8110  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-acn 9374  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-cmp 21998  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274  df-ditg 24448  df-limc 24467  df-dv 24468 This theorem is referenced by:  fourierdlem109  42507
 Copyright terms: Public domain W3C validator