Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem108 Structured version   Visualization version   GIF version

Theorem fourierdlem108 44445
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 44429 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem108.a (𝜑𝐴 ∈ ℝ)
fourierdlem108.b (𝜑𝐵 ∈ ℝ)
fourierdlem108.t 𝑇 = (𝐵𝐴)
fourierdlem108.x (𝜑𝑋 ∈ ℝ+)
fourierdlem108.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem108.m (𝜑𝑀 ∈ ℕ)
fourierdlem108.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem108.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem108.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem108.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem108.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem108.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem108 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑖,𝐹,𝑥   𝑥,𝐿   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑖,𝑋,𝑥   𝑚,𝑋,𝑝   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑖,𝑚,𝑝)   𝑅(𝑖,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem108
Dummy variables 𝑓 𝑔 𝑘 𝑤 𝑦 𝑗 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem108.a . 2 (𝜑𝐴 ∈ ℝ)
2 fourierdlem108.b . 2 (𝜑𝐵 ∈ ℝ)
3 fourierdlem108.t . 2 𝑇 = (𝐵𝐴)
4 fourierdlem108.x . 2 (𝜑𝑋 ∈ ℝ+)
5 fourierdlem108.p . 2 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
6 fourierdlem108.m . 2 (𝜑𝑀 ∈ ℕ)
7 fourierdlem108.q . 2 (𝜑𝑄 ∈ (𝑃𝑀))
8 fourierdlem108.f . 2 (𝜑𝐹:ℝ⟶ℂ)
9 fourierdlem108.fper . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
10 fourierdlem108.fcn . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
11 fourierdlem108.r . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
12 fourierdlem108.l . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
13 eqid 2736 . 2 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
14 oveq1 7364 . . . . . 6 (𝑤 = 𝑦 → (𝑤 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
1514eleq1d 2822 . . . . 5 (𝑤 = 𝑦 → ((𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
1615rexbidv 3175 . . . 4 (𝑤 = 𝑦 → (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
1716cbvrabv 3417 . . 3 {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}
1817uneq2i 4120 . 2 ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
19 oveq1 7364 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑙 · 𝑇) = (𝑘 · 𝑇))
2019oveq2d 7373 . . . . . . . . 9 (𝑙 = 𝑘 → (𝑤 + (𝑙 · 𝑇)) = (𝑤 + (𝑘 · 𝑇)))
2120eleq1d 2822 . . . . . . . 8 (𝑙 = 𝑘 → ((𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2221cbvrexvw 3226 . . . . . . 7 (∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄)
2322rgenw 3068 . . . . . 6 𝑤 ∈ ((𝐴𝑋)[,]𝐴)(∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄)
24 rabbi 3432 . . . . . 6 (∀𝑤 ∈ ((𝐴𝑋)[,]𝐴)(∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄) ↔ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
2523, 24mpbi 229 . . . . 5 {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}
2625uneq2i 4120 . . . 4 ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
2726fveq2i 6845 . . 3 (♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
2827oveq1i 7367 . 2 ((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
29 isoeq5 7266 . . . . 5 (({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3026, 29ax-mp 5 . . . 4 (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
31 isoeq1 7262 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3230, 31bitrid 282 . . 3 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3332cbviotavw 6456 . 2 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
34 id 22 . . . 4 (𝑤 = 𝑥𝑤 = 𝑥)
35 oveq2 7365 . . . . . . 7 (𝑤 = 𝑥 → (𝐵𝑤) = (𝐵𝑥))
3635oveq1d 7372 . . . . . 6 (𝑤 = 𝑥 → ((𝐵𝑤) / 𝑇) = ((𝐵𝑥) / 𝑇))
3736fveq2d 6846 . . . . 5 (𝑤 = 𝑥 → (⌊‘((𝐵𝑤) / 𝑇)) = (⌊‘((𝐵𝑥) / 𝑇)))
3837oveq1d 7372 . . . 4 (𝑤 = 𝑥 → ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
3934, 38oveq12d 7375 . . 3 (𝑤 = 𝑥 → (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
4039cbvmptv 5218 . 2 (𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
41 eqeq1 2740 . . . 4 (𝑤 = 𝑦 → (𝑤 = 𝐵𝑦 = 𝐵))
42 id 22 . . . 4 (𝑤 = 𝑦𝑤 = 𝑦)
4341, 42ifbieq2d 4512 . . 3 (𝑤 = 𝑦 → if(𝑤 = 𝐵, 𝐴, 𝑤) = if(𝑦 = 𝐵, 𝐴, 𝑦))
4443cbvmptv 5218 . 2 (𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤)) = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
45 fveq2 6842 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧) = ((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))
4645fveq2d 6846 . . . . . . 7 (𝑧 = 𝑥 → ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧)) = ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥)))
4746breq2d 5117 . . . . . 6 (𝑧 = 𝑥 → ((𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧)) ↔ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))))
4847rabbidv 3415 . . . . 5 (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))})
49 fveq2 6842 . . . . . . 7 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
5049breq1d 5115 . . . . . 6 (𝑗 = 𝑖 → ((𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))))
5150cbvrabv 3417 . . . . 5 {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}
5248, 51eqtrdi 2792 . . . 4 (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))})
5352supeq1d 9382 . . 3 (𝑧 = 𝑥 → sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
5453cbvmptv 5218 . 2 (𝑧 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
551, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 28, 33, 40, 44, 54fourierdlem107 44444 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  cun 3908  ifcif 4486  {cpr 4588   class class class wbr 5105  cmpt 5188  ran crn 5634  cres 5635  cio 6446  wf 6492  cfv 6496   Isom wiso 6497  (class class class)co 7357  m cmap 8765  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  cz 12499  +crp 12915  (,)cioo 13264  (,]cioc 13265  [,]cicc 13267  ...cfz 13424  ..^cfzo 13567  cfl 13695  chash 14230  cnccncf 24239  citg 24982   lim climc 25226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-symdif 4202  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034  df-ditg 25211  df-limc 25230  df-dv 25231
This theorem is referenced by:  fourierdlem109  44446
  Copyright terms: Public domain W3C validator