Step | Hyp | Ref
| Expression |
1 | | fourierdlem108.a |
. 2
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | fourierdlem108.b |
. 2
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | fourierdlem108.t |
. 2
⊢ 𝑇 = (𝐵 − 𝐴) |
4 | | fourierdlem108.x |
. 2
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
5 | | fourierdlem108.p |
. 2
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
6 | | fourierdlem108.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
7 | | fourierdlem108.q |
. 2
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
8 | | fourierdlem108.f |
. 2
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
9 | | fourierdlem108.fper |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
10 | | fourierdlem108.fcn |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
11 | | fourierdlem108.r |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
12 | | fourierdlem108.l |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
13 | | eqid 2738 |
. 2
⊢ (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
(𝐴 − 𝑋) ∧ (𝑝‘𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
14 | | oveq1 7262 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇))) |
15 | 14 | eleq1d 2823 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
16 | 15 | rexbidv 3225 |
. . . 4
⊢ (𝑤 = 𝑦 → (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
17 | 16 | cbvrabv 3416 |
. . 3
⊢ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} |
18 | 17 | uneq2i 4090 |
. 2
⊢ ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴 − 𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
19 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑘 → (𝑙 · 𝑇) = (𝑘 · 𝑇)) |
20 | 19 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑙 = 𝑘 → (𝑤 + (𝑙 · 𝑇)) = (𝑤 + (𝑘 · 𝑇))) |
21 | 20 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑙 = 𝑘 → ((𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
22 | 21 | cbvrexvw 3373 |
. . . . . . 7
⊢
(∃𝑙 ∈
ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄) |
23 | 22 | rgenw 3075 |
. . . . . 6
⊢
∀𝑤 ∈
((𝐴 − 𝑋)[,]𝐴)(∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄) |
24 | | rabbi 3309 |
. . . . . 6
⊢
(∀𝑤 ∈
((𝐴 − 𝑋)[,]𝐴)(∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄) ↔ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
25 | 23, 24 | mpbi 229 |
. . . . 5
⊢ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} |
26 | 25 | uneq2i 4090 |
. . . 4
⊢ ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
27 | 26 | fveq2i 6759 |
. . 3
⊢
(♯‘({(𝐴
− 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) |
28 | 27 | oveq1i 7265 |
. 2
⊢
((♯‘({(𝐴
− 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) |
29 | | isoeq5 7172 |
. . . . 5
⊢ (({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) |
30 | 26, 29 | ax-mp 5 |
. . . 4
⊢ (𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) |
31 | | isoeq1 7168 |
. . . 4
⊢ (𝑔 = 𝑓 → (𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) |
32 | 30, 31 | syl5bb 282 |
. . 3
⊢ (𝑔 = 𝑓 → (𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) |
33 | 32 | cbviotavw 6384 |
. 2
⊢
(℩𝑔𝑔 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , <
((0...((♯‘({(𝐴
− 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴 − 𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) |
34 | | id 22 |
. . . 4
⊢ (𝑤 = 𝑥 → 𝑤 = 𝑥) |
35 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (𝐵 − 𝑤) = (𝐵 − 𝑥)) |
36 | 35 | oveq1d 7270 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝐵 − 𝑤) / 𝑇) = ((𝐵 − 𝑥) / 𝑇)) |
37 | 36 | fveq2d 6760 |
. . . . 5
⊢ (𝑤 = 𝑥 → (⌊‘((𝐵 − 𝑤) / 𝑇)) = (⌊‘((𝐵 − 𝑥) / 𝑇))) |
38 | 37 | oveq1d 7270 |
. . . 4
⊢ (𝑤 = 𝑥 → ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) |
39 | 34, 38 | oveq12d 7273 |
. . 3
⊢ (𝑤 = 𝑥 → (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
40 | 39 | cbvmptv 5183 |
. 2
⊢ (𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
41 | | eqeq1 2742 |
. . . 4
⊢ (𝑤 = 𝑦 → (𝑤 = 𝐵 ↔ 𝑦 = 𝐵)) |
42 | | id 22 |
. . . 4
⊢ (𝑤 = 𝑦 → 𝑤 = 𝑦) |
43 | 41, 42 | ifbieq2d 4482 |
. . 3
⊢ (𝑤 = 𝑦 → if(𝑤 = 𝐵, 𝐴, 𝑤) = if(𝑦 = 𝐵, 𝐴, 𝑦)) |
44 | 43 | cbvmptv 5183 |
. 2
⊢ (𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤)) = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) |
45 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑧) = ((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑥)) |
46 | 45 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑧)) = ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑥))) |
47 | 46 | breq2d 5082 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((𝑄‘𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑧)) ↔ (𝑄‘𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑥)))) |
48 | 47 | rabbidv 3404 |
. . . . 5
⊢ (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑥))}) |
49 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → (𝑄‘𝑗) = (𝑄‘𝑖)) |
50 | 49 | breq1d 5080 |
. . . . . 6
⊢ (𝑗 = 𝑖 → ((𝑄‘𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄‘𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑥)))) |
51 | 50 | cbvrabv 3416 |
. . . . 5
⊢ {𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑥))} |
52 | 48, 51 | eqtrdi 2795 |
. . . 4
⊢ (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑥))}) |
53 | 52 | supeq1d 9135 |
. . 3
⊢ (𝑧 = 𝑥 → sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < )) |
54 | 53 | cbvmptv 5183 |
. 2
⊢ (𝑧 ∈ ℝ ↦
sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵 − 𝑤) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < )) |
55 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 18, 28, 33, 40, 44, 54 | fourierdlem107 43644 |
1
⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |