Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem108 Structured version   Visualization version   GIF version

Theorem fourierdlem108 46195
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 46179 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem108.a (𝜑𝐴 ∈ ℝ)
fourierdlem108.b (𝜑𝐵 ∈ ℝ)
fourierdlem108.t 𝑇 = (𝐵𝐴)
fourierdlem108.x (𝜑𝑋 ∈ ℝ+)
fourierdlem108.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem108.m (𝜑𝑀 ∈ ℕ)
fourierdlem108.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem108.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem108.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem108.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem108.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem108.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem108 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑖,𝐹,𝑥   𝑥,𝐿   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑖,𝑋,𝑥   𝑚,𝑋,𝑝   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑖,𝑚,𝑝)   𝑅(𝑖,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem108
Dummy variables 𝑓 𝑔 𝑘 𝑤 𝑦 𝑗 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem108.a . 2 (𝜑𝐴 ∈ ℝ)
2 fourierdlem108.b . 2 (𝜑𝐵 ∈ ℝ)
3 fourierdlem108.t . 2 𝑇 = (𝐵𝐴)
4 fourierdlem108.x . 2 (𝜑𝑋 ∈ ℝ+)
5 fourierdlem108.p . 2 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
6 fourierdlem108.m . 2 (𝜑𝑀 ∈ ℕ)
7 fourierdlem108.q . 2 (𝜑𝑄 ∈ (𝑃𝑀))
8 fourierdlem108.f . 2 (𝜑𝐹:ℝ⟶ℂ)
9 fourierdlem108.fper . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
10 fourierdlem108.fcn . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
11 fourierdlem108.r . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
12 fourierdlem108.l . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
13 eqid 2729 . 2 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
14 oveq1 7356 . . . . . 6 (𝑤 = 𝑦 → (𝑤 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
1514eleq1d 2813 . . . . 5 (𝑤 = 𝑦 → ((𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
1615rexbidv 3153 . . . 4 (𝑤 = 𝑦 → (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
1716cbvrabv 3405 . . 3 {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}
1817uneq2i 4116 . 2 ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
19 oveq1 7356 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑙 · 𝑇) = (𝑘 · 𝑇))
2019oveq2d 7365 . . . . . . . . 9 (𝑙 = 𝑘 → (𝑤 + (𝑙 · 𝑇)) = (𝑤 + (𝑘 · 𝑇)))
2120eleq1d 2813 . . . . . . . 8 (𝑙 = 𝑘 → ((𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2221cbvrexvw 3208 . . . . . . 7 (∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄)
2322rgenw 3048 . . . . . 6 𝑤 ∈ ((𝐴𝑋)[,]𝐴)(∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄)
24 rabbi 3425 . . . . . 6 (∀𝑤 ∈ ((𝐴𝑋)[,]𝐴)(∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄) ↔ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
2523, 24mpbi 230 . . . . 5 {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}
2625uneq2i 4116 . . . 4 ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
2726fveq2i 6825 . . 3 (♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
2827oveq1i 7359 . 2 ((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
29 isoeq5 7258 . . . . 5 (({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3026, 29ax-mp 5 . . . 4 (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
31 isoeq1 7254 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3230, 31bitrid 283 . . 3 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3332cbviotavw 6446 . 2 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑙 ∈ ℤ (𝑤 + (𝑙 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(𝐴𝑋), 𝐴} ∪ {𝑤 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
34 id 22 . . . 4 (𝑤 = 𝑥𝑤 = 𝑥)
35 oveq2 7357 . . . . . . 7 (𝑤 = 𝑥 → (𝐵𝑤) = (𝐵𝑥))
3635oveq1d 7364 . . . . . 6 (𝑤 = 𝑥 → ((𝐵𝑤) / 𝑇) = ((𝐵𝑥) / 𝑇))
3736fveq2d 6826 . . . . 5 (𝑤 = 𝑥 → (⌊‘((𝐵𝑤) / 𝑇)) = (⌊‘((𝐵𝑥) / 𝑇)))
3837oveq1d 7364 . . . 4 (𝑤 = 𝑥 → ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
3934, 38oveq12d 7367 . . 3 (𝑤 = 𝑥 → (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
4039cbvmptv 5196 . 2 (𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
41 eqeq1 2733 . . . 4 (𝑤 = 𝑦 → (𝑤 = 𝐵𝑦 = 𝐵))
42 id 22 . . . 4 (𝑤 = 𝑦𝑤 = 𝑦)
4341, 42ifbieq2d 4503 . . 3 (𝑤 = 𝑦 → if(𝑤 = 𝐵, 𝐴, 𝑤) = if(𝑦 = 𝐵, 𝐴, 𝑦))
4443cbvmptv 5196 . 2 (𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤)) = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
45 fveq2 6822 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧) = ((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))
4645fveq2d 6826 . . . . . . 7 (𝑧 = 𝑥 → ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧)) = ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥)))
4746breq2d 5104 . . . . . 6 (𝑧 = 𝑥 → ((𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧)) ↔ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))))
4847rabbidv 3402 . . . . 5 (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))})
49 fveq2 6822 . . . . . . 7 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
5049breq1d 5102 . . . . . 6 (𝑗 = 𝑖 → ((𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥)) ↔ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))))
5150cbvrabv 3405 . . . . 5 {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}
5248, 51eqtrdi 2780 . . . 4 (𝑧 = 𝑥 → {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))})
5352supeq1d 9336 . . 3 (𝑧 = 𝑥 → sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
5453cbvmptv 5196 . 2 (𝑧 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑧))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ ((𝑤 ∈ (𝐴(,]𝐵) ↦ if(𝑤 = 𝐵, 𝐴, 𝑤))‘((𝑤 ∈ ℝ ↦ (𝑤 + ((⌊‘((𝐵𝑤) / 𝑇)) · 𝑇)))‘𝑥))}, ℝ, < ))
551, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 28, 33, 40, 44, 54fourierdlem107 46194 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  cun 3901  ifcif 4476  {cpr 4579   class class class wbr 5092  cmpt 5173  ran crn 5620  cres 5621  cio 6436  wf 6478  cfv 6482   Isom wiso 6483  (class class class)co 7349  m cmap 8753  supcsup 9330  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  cz 12471  +crp 12893  (,)cioo 13248  (,]cioc 13249  [,]cicc 13251  ...cfz 13410  ..^cfzo 13557  cfl 13694  chash 14237  cnccncf 24767  citg 25517   lim climc 25761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-symdif 4204  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-ibl 25521  df-itg 25522  df-0p 25569  df-ditg 25746  df-limc 25765  df-dv 25766
This theorem is referenced by:  fourierdlem109  46196
  Copyright terms: Public domain W3C validator