Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem108 Structured version   Visualization version   GIF version

Theorem fourierdlem108 45665
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 45649 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem108.a (πœ‘ β†’ 𝐴 ∈ ℝ)
fourierdlem108.b (πœ‘ β†’ 𝐡 ∈ ℝ)
fourierdlem108.t 𝑇 = (𝐡 βˆ’ 𝐴)
fourierdlem108.x (πœ‘ β†’ 𝑋 ∈ ℝ+)
fourierdlem108.p 𝑃 = (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...π‘š)) ∣ (((π‘β€˜0) = 𝐴 ∧ (π‘β€˜π‘š) = 𝐡) ∧ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))})
fourierdlem108.m (πœ‘ β†’ 𝑀 ∈ β„•)
fourierdlem108.q (πœ‘ β†’ 𝑄 ∈ (π‘ƒβ€˜π‘€))
fourierdlem108.f (πœ‘ β†’ 𝐹:β„βŸΆβ„‚)
fourierdlem108.fper ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜(π‘₯ + 𝑇)) = (πΉβ€˜π‘₯))
fourierdlem108.fcn ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) ∈ (((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))–cnβ†’β„‚))
fourierdlem108.r ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑅 ∈ ((𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜π‘–)))
fourierdlem108.l ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝐿 ∈ ((𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem108 (πœ‘ β†’ ∫((𝐴 βˆ’ 𝑋)[,](𝐡 βˆ’ 𝑋))(πΉβ€˜π‘₯) dπ‘₯ = ∫(𝐴[,]𝐡)(πΉβ€˜π‘₯) dπ‘₯)
Distinct variable groups:   𝐴,𝑖,π‘₯   𝐴,π‘š,𝑝,𝑖   𝐡,𝑖,π‘₯   𝐡,π‘š,𝑝   𝑖,𝐹,π‘₯   π‘₯,𝐿   𝑖,𝑀,π‘₯   π‘š,𝑀,𝑝   𝑄,𝑖,π‘₯   𝑄,π‘š,𝑝   π‘₯,𝑅   𝑇,𝑖,π‘₯   𝑇,π‘š,𝑝   𝑖,𝑋,π‘₯   π‘š,𝑋,𝑝   πœ‘,𝑖,π‘₯
Allowed substitution hints:   πœ‘(π‘š,𝑝)   𝑃(π‘₯,𝑖,π‘š,𝑝)   𝑅(𝑖,π‘š,𝑝)   𝐹(π‘š,𝑝)   𝐿(𝑖,π‘š,𝑝)

Proof of Theorem fourierdlem108
Dummy variables 𝑓 𝑔 π‘˜ 𝑀 𝑦 𝑗 𝑧 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem108.a . 2 (πœ‘ β†’ 𝐴 ∈ ℝ)
2 fourierdlem108.b . 2 (πœ‘ β†’ 𝐡 ∈ ℝ)
3 fourierdlem108.t . 2 𝑇 = (𝐡 βˆ’ 𝐴)
4 fourierdlem108.x . 2 (πœ‘ β†’ 𝑋 ∈ ℝ+)
5 fourierdlem108.p . 2 𝑃 = (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...π‘š)) ∣ (((π‘β€˜0) = 𝐴 ∧ (π‘β€˜π‘š) = 𝐡) ∧ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))})
6 fourierdlem108.m . 2 (πœ‘ β†’ 𝑀 ∈ β„•)
7 fourierdlem108.q . 2 (πœ‘ β†’ 𝑄 ∈ (π‘ƒβ€˜π‘€))
8 fourierdlem108.f . 2 (πœ‘ β†’ 𝐹:β„βŸΆβ„‚)
9 fourierdlem108.fper . 2 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜(π‘₯ + 𝑇)) = (πΉβ€˜π‘₯))
10 fourierdlem108.fcn . 2 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) ∈ (((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))–cnβ†’β„‚))
11 fourierdlem108.r . 2 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑅 ∈ ((𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜π‘–)))
12 fourierdlem108.l . 2 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝐿 ∈ ((𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜(𝑖 + 1))))
13 eqid 2725 . 2 (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...π‘š)) ∣ (((π‘β€˜0) = (𝐴 βˆ’ 𝑋) ∧ (π‘β€˜π‘š) = 𝐴) ∧ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))}) = (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...π‘š)) ∣ (((π‘β€˜0) = (𝐴 βˆ’ 𝑋) ∧ (π‘β€˜π‘š) = 𝐴) ∧ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))})
14 oveq1 7424 . . . . . 6 (𝑀 = 𝑦 β†’ (𝑀 + (π‘˜ Β· 𝑇)) = (𝑦 + (π‘˜ Β· 𝑇)))
1514eleq1d 2810 . . . . 5 (𝑀 = 𝑦 β†’ ((𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄))
1615rexbidv 3169 . . . 4 (𝑀 = 𝑦 β†’ (βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄 ↔ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄))
1716cbvrabv 3430 . . 3 {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄}
1817uneq2i 4158 . 2 ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄}) = ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑦 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑦 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})
19 oveq1 7424 . . . . . . . . . 10 (𝑙 = π‘˜ β†’ (𝑙 Β· 𝑇) = (π‘˜ Β· 𝑇))
2019oveq2d 7433 . . . . . . . . 9 (𝑙 = π‘˜ β†’ (𝑀 + (𝑙 Β· 𝑇)) = (𝑀 + (π‘˜ Β· 𝑇)))
2120eleq1d 2810 . . . . . . . 8 (𝑙 = π‘˜ β†’ ((𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄 ↔ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄))
2221cbvrexvw 3226 . . . . . . 7 (βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄 ↔ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄)
2322rgenw 3055 . . . . . 6 βˆ€π‘€ ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴)(βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄 ↔ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄)
24 rabbi 3450 . . . . . 6 (βˆ€π‘€ ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴)(βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄 ↔ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄) ↔ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄} = {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})
2523, 24mpbi 229 . . . . 5 {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄} = {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄}
2625uneq2i 4158 . . . 4 ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}) = ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})
2726fveq2i 6897 . . 3 (β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) = (β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄}))
2827oveq1i 7427 . 2 ((β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1) = ((β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)
29 isoeq5 7326 . . . . 5 (({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}) = ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄}) β†’ (𝑔 Isom < , < ((0...((β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄}))))
3026, 29ax-mp 5 . . . 4 (𝑔 Isom < , < ((0...((β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})))
31 isoeq1 7322 . . . 4 (𝑔 = 𝑓 β†’ (𝑔 Isom < , < ((0...((β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄}))))
3230, 31bitrid 282 . . 3 (𝑔 = 𝑓 β†’ (𝑔 Isom < , < ((0...((β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄}))))
3332cbviotavw 6507 . 2 (℩𝑔𝑔 Isom < , < ((0...((β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((β™―β€˜({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘™ ∈ β„€ (𝑀 + (𝑙 Β· 𝑇)) ∈ ran 𝑄})) βˆ’ 1)), ({(𝐴 βˆ’ 𝑋), 𝐴} βˆͺ {𝑀 ∈ ((𝐴 βˆ’ 𝑋)[,]𝐴) ∣ βˆƒπ‘˜ ∈ β„€ (𝑀 + (π‘˜ Β· 𝑇)) ∈ ran 𝑄})))
34 id 22 . . . 4 (𝑀 = π‘₯ β†’ 𝑀 = π‘₯)
35 oveq2 7425 . . . . . . 7 (𝑀 = π‘₯ β†’ (𝐡 βˆ’ 𝑀) = (𝐡 βˆ’ π‘₯))
3635oveq1d 7432 . . . . . 6 (𝑀 = π‘₯ β†’ ((𝐡 βˆ’ 𝑀) / 𝑇) = ((𝐡 βˆ’ π‘₯) / 𝑇))
3736fveq2d 6898 . . . . 5 (𝑀 = π‘₯ β†’ (βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) = (βŒŠβ€˜((𝐡 βˆ’ π‘₯) / 𝑇)))
3837oveq1d 7432 . . . 4 (𝑀 = π‘₯ β†’ ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇) = ((βŒŠβ€˜((𝐡 βˆ’ π‘₯) / 𝑇)) Β· 𝑇))
3934, 38oveq12d 7435 . . 3 (𝑀 = π‘₯ β†’ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)) = (π‘₯ + ((βŒŠβ€˜((𝐡 βˆ’ π‘₯) / 𝑇)) Β· 𝑇)))
4039cbvmptv 5261 . 2 (𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇))) = (π‘₯ ∈ ℝ ↦ (π‘₯ + ((βŒŠβ€˜((𝐡 βˆ’ π‘₯) / 𝑇)) Β· 𝑇)))
41 eqeq1 2729 . . . 4 (𝑀 = 𝑦 β†’ (𝑀 = 𝐡 ↔ 𝑦 = 𝐡))
42 id 22 . . . 4 (𝑀 = 𝑦 β†’ 𝑀 = 𝑦)
4341, 42ifbieq2d 4555 . . 3 (𝑀 = 𝑦 β†’ if(𝑀 = 𝐡, 𝐴, 𝑀) = if(𝑦 = 𝐡, 𝐴, 𝑦))
4443cbvmptv 5261 . 2 (𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀)) = (𝑦 ∈ (𝐴(,]𝐡) ↦ if(𝑦 = 𝐡, 𝐴, 𝑦))
45 fveq2 6894 . . . . . . . 8 (𝑧 = π‘₯ β†’ ((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘§) = ((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘₯))
4645fveq2d 6898 . . . . . . 7 (𝑧 = π‘₯ β†’ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘§)) = ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘₯)))
4746breq2d 5160 . . . . . 6 (𝑧 = π‘₯ β†’ ((π‘„β€˜π‘—) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘§)) ↔ (π‘„β€˜π‘—) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘₯))))
4847rabbidv 3427 . . . . 5 (𝑧 = π‘₯ β†’ {𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘§))} = {𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘₯))})
49 fveq2 6894 . . . . . . 7 (𝑗 = 𝑖 β†’ (π‘„β€˜π‘—) = (π‘„β€˜π‘–))
5049breq1d 5158 . . . . . 6 (𝑗 = 𝑖 β†’ ((π‘„β€˜π‘—) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘₯)) ↔ (π‘„β€˜π‘–) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘₯))))
5150cbvrabv 3430 . . . . 5 {𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘₯))} = {𝑖 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘–) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘₯))}
5248, 51eqtrdi 2781 . . . 4 (𝑧 = π‘₯ β†’ {𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘§))} = {𝑖 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘–) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘₯))})
5352supeq1d 9469 . . 3 (𝑧 = π‘₯ β†’ sup({𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘§))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘–) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘₯))}, ℝ, < ))
5453cbvmptv 5261 . 2 (𝑧 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘—) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘§))}, ℝ, < )) = (π‘₯ ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (π‘„β€˜π‘–) ≀ ((𝑀 ∈ (𝐴(,]𝐡) ↦ if(𝑀 = 𝐡, 𝐴, 𝑀))β€˜((𝑀 ∈ ℝ ↦ (𝑀 + ((βŒŠβ€˜((𝐡 βˆ’ 𝑀) / 𝑇)) Β· 𝑇)))β€˜π‘₯))}, ℝ, < ))
551, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 28, 33, 40, 44, 54fourierdlem107 45664 1 (πœ‘ β†’ ∫((𝐴 βˆ’ 𝑋)[,](𝐡 βˆ’ 𝑋))(πΉβ€˜π‘₯) dπ‘₯ = ∫(𝐴[,]𝐡)(πΉβ€˜π‘₯) dπ‘₯)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  βˆƒwrex 3060  {crab 3419   βˆͺ cun 3943  ifcif 4529  {cpr 4631   class class class wbr 5148   ↦ cmpt 5231  ran crn 5678   β†Ύ cres 5679  β„©cio 6497  βŸΆwf 6543  β€˜cfv 6547   Isom wiso 6548  (class class class)co 7417   ↑m cmap 8843  supcsup 9463  β„‚cc 11136  β„cr 11137  0cc0 11138  1c1 11139   + caddc 11141   Β· cmul 11143   < clt 11278   ≀ cle 11279   βˆ’ cmin 11474   / cdiv 11901  β„•cn 12242  β„€cz 12588  β„+crp 13006  (,)cioo 13356  (,]cioc 13357  [,]cicc 13359  ...cfz 13516  ..^cfzo 13659  βŒŠcfl 13787  β™―chash 14321  β€“cnβ†’ccncf 24826  βˆ«citg 25577   limβ„‚ climc 25821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cc 10458  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-symdif 4242  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-ofr 7684  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-dju 9924  df-card 9962  df-acn 9965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-xnn0 12575  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-ioo 13360  df-ioc 13361  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-mod 13867  df-seq 13999  df-exp 14059  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-limsup 15447  df-clim 15464  df-rlim 15465  df-sum 15665  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-hom 17256  df-cco 17257  df-rest 17403  df-topn 17404  df-0g 17422  df-gsum 17423  df-topgen 17424  df-pt 17425  df-prds 17428  df-xrs 17483  df-qtop 17488  df-imas 17489  df-xps 17491  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-submnd 18740  df-mulg 19028  df-cntz 19272  df-cmn 19741  df-psmet 21275  df-xmet 21276  df-met 21277  df-bl 21278  df-mopn 21279  df-fbas 21280  df-fg 21281  df-cnfld 21284  df-top 22826  df-topon 22843  df-topsp 22865  df-bases 22879  df-cld 22953  df-ntr 22954  df-cls 22955  df-nei 23032  df-lp 23070  df-perf 23071  df-cn 23161  df-cnp 23162  df-haus 23249  df-cmp 23321  df-tx 23496  df-hmeo 23689  df-fil 23780  df-fm 23872  df-flim 23873  df-flf 23874  df-xms 24256  df-ms 24257  df-tms 24258  df-cncf 24828  df-ovol 25423  df-vol 25424  df-mbf 25578  df-itg1 25579  df-itg2 25580  df-ibl 25581  df-itg 25582  df-0p 25629  df-ditg 25806  df-limc 25825  df-dv 25826
This theorem is referenced by:  fourierdlem109  45666
  Copyright terms: Public domain W3C validator