Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefr31fv1 Structured version   Visualization version   GIF version

Theorem cdlemefr31fv1 39586
Description: Value of (πΉβ€˜π‘…) when Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄). TODO This may be useful for shortening others that now use riotasv 38133 3d . TODO: FIX COMMENT. (Contributed by NM, 30-Mar-2013.)
Hypotheses
Ref Expression
cdlemefr27.b 𝐡 = (Baseβ€˜πΎ)
cdlemefr27.l ≀ = (leβ€˜πΎ)
cdlemefr27.j ∨ = (joinβ€˜πΎ)
cdlemefr27.m ∧ = (meetβ€˜πΎ)
cdlemefr27.a 𝐴 = (Atomsβ€˜πΎ)
cdlemefr27.h 𝐻 = (LHypβ€˜πΎ)
cdlemefr27.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemefr27.c 𝐢 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
cdlemefr27.n 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢)
cdleme29fr.o 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (𝑁 ∨ (π‘₯ ∧ π‘Š))))
cdleme29fr.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), 𝑂, π‘₯))
cdleme43frv.x 𝑋 = ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))
Assertion
Ref Expression
cdlemefr31fv1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (πΉβ€˜π‘…) = 𝑋)
Distinct variable groups:   𝐴,𝑠   ∨ ,𝑠   ≀ ,𝑠   ∧ ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   π‘ˆ,𝑠   π‘Š,𝑠,𝑧   𝐻,𝑠   𝐾,𝑠   π‘₯,𝑧,𝐴,𝑠   𝐡,𝑠,π‘₯,𝑧   𝑧,𝐻   π‘₯, ∨ ,𝑧   𝑧,𝐾   π‘₯, ≀ ,𝑧   π‘₯, ∧ ,𝑧   π‘₯,𝑁,𝑧   𝑧,𝑃   𝑧,𝑄   π‘₯,𝑅,𝑧   π‘₯,π‘Š,𝑧   π‘₯,𝑃   π‘₯,𝑄
Allowed substitution hints:   𝐢(π‘₯,𝑧,𝑠)   π‘ˆ(π‘₯,𝑧)   𝐹(π‘₯,𝑧,𝑠)   𝐻(π‘₯)   𝐼(π‘₯,𝑧,𝑠)   𝐾(π‘₯)   𝑁(𝑠)   𝑂(π‘₯,𝑧,𝑠)   𝑋(π‘₯,𝑧,𝑠)

Proof of Theorem cdlemefr31fv1
StepHypRef Expression
1 cdlemefr27.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 cdlemefr27.l . . 3 ≀ = (leβ€˜πΎ)
3 cdlemefr27.j . . 3 ∨ = (joinβ€˜πΎ)
4 cdlemefr27.m . . 3 ∧ = (meetβ€˜πΎ)
5 cdlemefr27.a . . 3 𝐴 = (Atomsβ€˜πΎ)
6 cdlemefr27.h . . 3 𝐻 = (LHypβ€˜πΎ)
7 cdlemefr27.u . . 3 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
8 cdlemefr27.c . . 3 𝐢 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
9 cdlemefr27.n . . 3 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢)
10 cdleme29fr.o . . 3 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (𝑁 ∨ (π‘₯ ∧ π‘Š))))
11 cdleme29fr.f . . 3 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), 𝑂, π‘₯))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemefr32fva1 39585 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (πΉβ€˜π‘…) = ⦋𝑅 / π‘ β¦Œπ‘)
13 simp2rl 1241 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑅 ∈ 𝐴)
14 simp3 1137 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))
15 cdleme43frv.x . . . 4 𝑋 = ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))
168, 9, 15cdleme31sn2 39564 . . 3 ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ ⦋𝑅 / π‘ β¦Œπ‘ = 𝑋)
1713, 14, 16syl2anc 583 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ ⦋𝑅 / π‘ β¦Œπ‘ = 𝑋)
1812, 17eqtrd 2771 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (πΉβ€˜π‘…) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  β¦‹csb 3893  ifcif 4528   class class class wbr 5148   ↦ cmpt 5231  β€˜cfv 6543  β„©crio 7367  (class class class)co 7412  Basecbs 17149  lecple 17209  joincjn 18269  meetcmee 18270  Atomscatm 38437  HLchlt 38524  LHypclh 39159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-lines 38676  df-psubsp 38678  df-pmap 38679  df-padd 38971  df-lhyp 39163
This theorem is referenced by:  cdlemefr44  39600
  Copyright terms: Public domain W3C validator