Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chnlen0 | Structured version Visualization version GIF version |
Description: A Hilbert lattice element that is not a subset of another is nonzero. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chnlen0 | ⊢ (𝐵 ∈ Cℋ → (¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 = 0ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le 29803 | . . 3 ⊢ (𝐵 ∈ Cℋ → 0ℋ ⊆ 𝐵) | |
2 | sseq1 3946 | . . 3 ⊢ (𝐴 = 0ℋ → (𝐴 ⊆ 𝐵 ↔ 0ℋ ⊆ 𝐵)) | |
3 | 1, 2 | syl5ibrcom 246 | . 2 ⊢ (𝐵 ∈ Cℋ → (𝐴 = 0ℋ → 𝐴 ⊆ 𝐵)) |
4 | 3 | con3d 152 | 1 ⊢ (𝐵 ∈ Cℋ → (¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 = 0ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 Cℋ cch 29291 0ℋc0h 29297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fv 6441 df-ov 7278 df-sh 29569 df-ch 29583 df-ch0 29615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |