| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chnlen0 | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice element that is not a subset of another is nonzero. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chnlen0 | ⊢ (𝐵 ∈ Cℋ → (¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 = 0ℋ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le 31416 | . . 3 ⊢ (𝐵 ∈ Cℋ → 0ℋ ⊆ 𝐵) | |
| 2 | sseq1 3960 | . . 3 ⊢ (𝐴 = 0ℋ → (𝐴 ⊆ 𝐵 ↔ 0ℋ ⊆ 𝐵)) | |
| 3 | 1, 2 | syl5ibrcom 247 | . 2 ⊢ (𝐵 ∈ Cℋ → (𝐴 = 0ℋ → 𝐴 ⊆ 𝐵)) |
| 4 | 3 | con3d 152 | 1 ⊢ (𝐵 ∈ Cℋ → (¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 = 0ℋ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 Cℋ cch 30904 0ℋc0h 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-hilex 30974 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fv 6489 df-ov 7349 df-sh 31182 df-ch 31196 df-ch0 31228 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |