HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chnlen0 Structured version   Visualization version   GIF version

Theorem chnlen0 29707
Description: A Hilbert lattice element that is not a subset of another is nonzero. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chnlen0 (𝐵C → (¬ 𝐴𝐵 → ¬ 𝐴 = 0))

Proof of Theorem chnlen0
StepHypRef Expression
1 ch0le 29704 . . 3 (𝐵C → 0𝐵)
2 sseq1 3942 . . 3 (𝐴 = 0 → (𝐴𝐵 ↔ 0𝐵))
31, 2syl5ibrcom 246 . 2 (𝐵C → (𝐴 = 0𝐴𝐵))
43con3d 152 1 (𝐵C → (¬ 𝐴𝐵 → ¬ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  wss 3883   C cch 29192  0c0h 29198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-hilex 29262
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fv 6426  df-ov 7258  df-sh 29470  df-ch 29484  df-ch0 29516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator