HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chnlen0 Structured version   Visualization version   GIF version

Theorem chnlen0 30697
Description: A Hilbert lattice element that is not a subset of another is nonzero. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chnlen0 (𝐵C → (¬ 𝐴𝐵 → ¬ 𝐴 = 0))

Proof of Theorem chnlen0
StepHypRef Expression
1 ch0le 30694 . . 3 (𝐵C → 0𝐵)
2 sseq1 4008 . . 3 (𝐴 = 0 → (𝐴𝐵 ↔ 0𝐵))
31, 2syl5ibrcom 246 . 2 (𝐵C → (𝐴 = 0𝐴𝐵))
43con3d 152 1 (𝐵C → (¬ 𝐴𝐵 → ¬ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2107  wss 3949   C cch 30182  0c0h 30188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-hilex 30252
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fv 6552  df-ov 7412  df-sh 30460  df-ch 30474  df-ch0 30506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator