HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chnlen0 Structured version   Visualization version   GIF version

Theorem chnlen0 31445
Description: A Hilbert lattice element that is not a subset of another is nonzero. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chnlen0 (𝐵C → (¬ 𝐴𝐵 → ¬ 𝐴 = 0))

Proof of Theorem chnlen0
StepHypRef Expression
1 ch0le 31442 . . 3 (𝐵C → 0𝐵)
2 sseq1 3956 . . 3 (𝐴 = 0 → (𝐴𝐵 ↔ 0𝐵))
31, 2syl5ibrcom 247 . 2 (𝐵C → (𝐴 = 0𝐴𝐵))
43con3d 152 1 (𝐵C → (¬ 𝐴𝐵 → ¬ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  wss 3898   C cch 30930  0c0h 30936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-hilex 31000
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fv 6497  df-ov 7358  df-sh 31208  df-ch 31222  df-ch0 31254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator