HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chnlen0 Structured version   Visualization version   GIF version

Theorem chnlen0 31380
Description: A Hilbert lattice element that is not a subset of another is nonzero. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chnlen0 (𝐵C → (¬ 𝐴𝐵 → ¬ 𝐴 = 0))

Proof of Theorem chnlen0
StepHypRef Expression
1 ch0le 31377 . . 3 (𝐵C → 0𝐵)
2 sseq1 3975 . . 3 (𝐴 = 0 → (𝐴𝐵 ↔ 0𝐵))
31, 2syl5ibrcom 247 . 2 (𝐵C → (𝐴 = 0𝐴𝐵))
43con3d 152 1 (𝐵C → (¬ 𝐴𝐵 → ¬ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wss 3917   C cch 30865  0c0h 30871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-hilex 30935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fv 6522  df-ov 7393  df-sh 31143  df-ch 31157  df-ch0 31189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator