| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chnlen0 | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice element that is not a subset of another is nonzero. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chnlen0 | ⊢ (𝐵 ∈ Cℋ → (¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 = 0ℋ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le 31403 | . . 3 ⊢ (𝐵 ∈ Cℋ → 0ℋ ⊆ 𝐵) | |
| 2 | sseq1 3963 | . . 3 ⊢ (𝐴 = 0ℋ → (𝐴 ⊆ 𝐵 ↔ 0ℋ ⊆ 𝐵)) | |
| 3 | 1, 2 | syl5ibrcom 247 | . 2 ⊢ (𝐵 ∈ Cℋ → (𝐴 = 0ℋ → 𝐴 ⊆ 𝐵)) |
| 4 | 3 | con3d 152 | 1 ⊢ (𝐵 ∈ Cℋ → (¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 = 0ℋ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 Cℋ cch 30891 0ℋc0h 30897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-hilex 30961 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fv 6494 df-ov 7356 df-sh 31169 df-ch 31183 df-ch0 31215 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |