HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ch0pss Structured version   Visualization version   GIF version

Theorem ch0pss 29382
Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
ch0pss (𝐴C → (0𝐴𝐴 ≠ 0))

Proof of Theorem ch0pss
StepHypRef Expression
1 df-pss 3862 . 2 (0𝐴 ↔ (0𝐴 ∧ 0𝐴))
2 necom 2987 . . 3 (0𝐴𝐴 ≠ 0)
3 ch0le 29378 . . . 4 (𝐴C → 0𝐴)
43biantrurd 536 . . 3 (𝐴C → (0𝐴 ↔ (0𝐴 ∧ 0𝐴)))
52, 4bitr3id 288 . 2 (𝐴C → (𝐴 ≠ 0 ↔ (0𝐴 ∧ 0𝐴)))
61, 5bitr4id 293 1 (𝐴C → (0𝐴𝐴 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2114  wne 2934  wss 3843  wpss 3844   C cch 28866  0c0h 28872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710  ax-sep 5167  ax-hilex 28936
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-rab 3062  df-v 3400  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-xp 5531  df-cnv 5533  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fv 6347  df-ov 7175  df-sh 29144  df-ch 29158  df-ch0 29190
This theorem is referenced by:  elat2  30277
  Copyright terms: Public domain W3C validator