| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ch0pss | Structured version Visualization version GIF version | ||
| Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0pss | ⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3917 | . 2 ⊢ (0ℋ ⊊ 𝐴 ↔ (0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴)) | |
| 2 | necom 2981 | . . 3 ⊢ (0ℋ ≠ 𝐴 ↔ 𝐴 ≠ 0ℋ) | |
| 3 | ch0le 31428 | . . . 4 ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) | |
| 4 | 3 | biantrurd 532 | . . 3 ⊢ (𝐴 ∈ Cℋ → (0ℋ ≠ 𝐴 ↔ (0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴))) |
| 5 | 2, 4 | bitr3id 285 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ≠ 0ℋ ↔ (0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴))) |
| 6 | 1, 5 | bitr4id 290 | 1 ⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ⊊ wpss 3898 Cℋ cch 30916 0ℋc0h 30922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-hilex 30986 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fv 6495 df-ov 7355 df-sh 31194 df-ch 31208 df-ch0 31240 |
| This theorem is referenced by: elat2 32327 |
| Copyright terms: Public domain | W3C validator |