Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ch0pss | Structured version Visualization version GIF version |
Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0pss | ⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3862 | . 2 ⊢ (0ℋ ⊊ 𝐴 ↔ (0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴)) | |
2 | necom 2987 | . . 3 ⊢ (0ℋ ≠ 𝐴 ↔ 𝐴 ≠ 0ℋ) | |
3 | ch0le 29378 | . . . 4 ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) | |
4 | 3 | biantrurd 536 | . . 3 ⊢ (𝐴 ∈ Cℋ → (0ℋ ≠ 𝐴 ↔ (0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴))) |
5 | 2, 4 | bitr3id 288 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ≠ 0ℋ ↔ (0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴))) |
6 | 1, 5 | bitr4id 293 | 1 ⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2114 ≠ wne 2934 ⊆ wss 3843 ⊊ wpss 3844 Cℋ cch 28866 0ℋc0h 28872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 ax-sep 5167 ax-hilex 28936 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ne 2935 df-rab 3062 df-v 3400 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-xp 5531 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fv 6347 df-ov 7175 df-sh 29144 df-ch 29158 df-ch0 29190 |
This theorem is referenced by: elat2 30277 |
Copyright terms: Public domain | W3C validator |