![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ch0pss | Structured version Visualization version GIF version |
Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0pss | ⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3963 | . 2 ⊢ (0ℋ ⊊ 𝐴 ↔ (0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴)) | |
2 | necom 2989 | . . 3 ⊢ (0ℋ ≠ 𝐴 ↔ 𝐴 ≠ 0ℋ) | |
3 | ch0le 31238 | . . . 4 ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) | |
4 | 3 | biantrurd 532 | . . 3 ⊢ (𝐴 ∈ Cℋ → (0ℋ ≠ 𝐴 ↔ (0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴))) |
5 | 2, 4 | bitr3id 285 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ≠ 0ℋ ↔ (0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴))) |
6 | 1, 5 | bitr4id 290 | 1 ⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ≠ wne 2935 ⊆ wss 3944 ⊊ wpss 3945 Cℋ cch 30726 0ℋc0h 30732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-hilex 30796 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fv 6550 df-ov 7417 df-sh 31004 df-ch 31018 df-ch0 31050 |
This theorem is referenced by: elat2 32137 |
Copyright terms: Public domain | W3C validator |