HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ch0pss Structured version   Visualization version   GIF version

Theorem ch0pss 31381
Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
ch0pss (𝐴C → (0𝐴𝐴 ≠ 0))

Proof of Theorem ch0pss
StepHypRef Expression
1 df-pss 3937 . 2 (0𝐴 ↔ (0𝐴 ∧ 0𝐴))
2 necom 2979 . . 3 (0𝐴𝐴 ≠ 0)
3 ch0le 31377 . . . 4 (𝐴C → 0𝐴)
43biantrurd 532 . . 3 (𝐴C → (0𝐴 ↔ (0𝐴 ∧ 0𝐴)))
52, 4bitr3id 285 . 2 (𝐴C → (𝐴 ≠ 0 ↔ (0𝐴 ∧ 0𝐴)))
61, 5bitr4id 290 1 (𝐴C → (0𝐴𝐴 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wne 2926  wss 3917  wpss 3918   C cch 30865  0c0h 30871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-hilex 30935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fv 6522  df-ov 7393  df-sh 31143  df-ch 31157  df-ch0 31189
This theorem is referenced by:  elat2  32276
  Copyright terms: Public domain W3C validator