HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ch0pss Structured version   Visualization version   GIF version

Theorem ch0pss 31415
Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
ch0pss (𝐴C → (0𝐴𝐴 ≠ 0))

Proof of Theorem ch0pss
StepHypRef Expression
1 df-pss 3920 . 2 (0𝐴 ↔ (0𝐴 ∧ 0𝐴))
2 necom 2979 . . 3 (0𝐴𝐴 ≠ 0)
3 ch0le 31411 . . . 4 (𝐴C → 0𝐴)
43biantrurd 532 . . 3 (𝐴C → (0𝐴 ↔ (0𝐴 ∧ 0𝐴)))
52, 4bitr3id 285 . 2 (𝐴C → (𝐴 ≠ 0 ↔ (0𝐴 ∧ 0𝐴)))
61, 5bitr4id 290 1 (𝐴C → (0𝐴𝐴 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2110  wne 2926  wss 3900  wpss 3901   C cch 30899  0c0h 30905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-hilex 30969
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fv 6485  df-ov 7344  df-sh 31177  df-ch 31191  df-ch0 31223
This theorem is referenced by:  elat2  32310
  Copyright terms: Public domain W3C validator