Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ch0pss | Structured version Visualization version GIF version |
Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0pss | ⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3911 | . 2 ⊢ (0ℋ ⊊ 𝐴 ↔ (0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴)) | |
2 | necom 2995 | . . 3 ⊢ (0ℋ ≠ 𝐴 ↔ 𝐴 ≠ 0ℋ) | |
3 | ch0le 29852 | . . . 4 ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) | |
4 | 3 | biantrurd 534 | . . 3 ⊢ (𝐴 ∈ Cℋ → (0ℋ ≠ 𝐴 ↔ (0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴))) |
5 | 2, 4 | bitr3id 285 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ≠ 0ℋ ↔ (0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴))) |
6 | 1, 5 | bitr4id 290 | 1 ⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2104 ≠ wne 2941 ⊆ wss 3892 ⊊ wpss 3893 Cℋ cch 29340 0ℋc0h 29346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-hilex 29410 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-xp 5606 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fv 6466 df-ov 7310 df-sh 29618 df-ch 29632 df-ch0 29664 |
This theorem is referenced by: elat2 30751 |
Copyright terms: Public domain | W3C validator |