HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ch0pss Structured version   Visualization version   GIF version

Theorem ch0pss 31432
Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
ch0pss (𝐴C → (0𝐴𝐴 ≠ 0))

Proof of Theorem ch0pss
StepHypRef Expression
1 df-pss 3917 . 2 (0𝐴 ↔ (0𝐴 ∧ 0𝐴))
2 necom 2981 . . 3 (0𝐴𝐴 ≠ 0)
3 ch0le 31428 . . . 4 (𝐴C → 0𝐴)
43biantrurd 532 . . 3 (𝐴C → (0𝐴 ↔ (0𝐴 ∧ 0𝐴)))
52, 4bitr3id 285 . 2 (𝐴C → (𝐴 ≠ 0 ↔ (0𝐴 ∧ 0𝐴)))
61, 5bitr4id 290 1 (𝐴C → (0𝐴𝐴 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wne 2928  wss 3897  wpss 3898   C cch 30916  0c0h 30922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-hilex 30986
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fv 6495  df-ov 7355  df-sh 31194  df-ch 31208  df-ch0 31240
This theorem is referenced by:  elat2  32327
  Copyright terms: Public domain W3C validator