| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ch0le | Structured version Visualization version GIF version | ||
| Description: The zero subspace is the smallest member of Cℋ. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le | ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh 31206 | . 2 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 2 | sh0le 31422 | . 2 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 Sℋ csh 30910 Cℋ cch 30911 0ℋc0h 30917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-hilex 30981 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fv 6494 df-ov 7355 df-sh 31189 df-ch 31203 df-ch0 31235 |
| This theorem is referenced by: chnlen0 31426 ch0pss 31427 ch0lei 31433 chssoc 31478 atcveq0 32330 |
| Copyright terms: Public domain | W3C validator |