Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ch0le | Structured version Visualization version GIF version |
Description: The zero subspace is the smallest member of Cℋ. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le | ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 29874 | . 2 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
2 | sh0le 30090 | . 2 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3902 Sℋ csh 29578 Cℋ cch 29579 0ℋc0h 29585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5248 ax-hilex 29649 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-xp 5631 df-cnv 5633 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fv 6492 df-ov 7345 df-sh 29857 df-ch 29871 df-ch0 29903 |
This theorem is referenced by: chnlen0 30094 ch0pss 30095 ch0lei 30101 chssoc 30146 atcveq0 30998 |
Copyright terms: Public domain | W3C validator |