HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ch0le Structured version   Visualization version   GIF version

Theorem ch0le 31423
Description: The zero subspace is the smallest member of C. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.)
Assertion
Ref Expression
ch0le (𝐴C → 0𝐴)

Proof of Theorem ch0le
StepHypRef Expression
1 chsh 31206 . 2 (𝐴C𝐴S )
2 sh0le 31422 . 2 (𝐴S → 0𝐴)
31, 2syl 17 1 (𝐴C → 0𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wss 3898   S csh 30910   C cch 30911  0c0h 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-hilex 30981
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fv 6494  df-ov 7355  df-sh 31189  df-ch 31203  df-ch0 31235
This theorem is referenced by:  chnlen0  31426  ch0pss  31427  ch0lei  31433  chssoc  31478  atcveq0  32330
  Copyright terms: Public domain W3C validator