| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmodscexp | Structured version Visualization version GIF version | ||
| Description: The powers of i belong to the scalar subring of a subcomplex module if i belongs to the scalar subring . (Contributed by AV, 18-Oct-2021.) |
| Ref | Expression |
|---|---|
| cmodscexp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cmodscexp.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cmodscexp | ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (i↑𝑁) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11062 | . . . 4 ⊢ i ∈ ℂ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) → i ∈ ℂ) |
| 3 | nnnn0 12385 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 4 | cnfldexp 21339 | . . 3 ⊢ ((i ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑁(.g‘(mulGrp‘ℂfld))i) = (i↑𝑁)) | |
| 5 | 2, 3, 4 | syl2an 596 | . 2 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘(mulGrp‘ℂfld))i) = (i↑𝑁)) |
| 6 | cmodscexp.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 7 | cmodscexp.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | 6, 7 | clmsubrg 24991 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
| 9 | eqid 2731 | . . . . . 6 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 10 | 9 | subrgsubm 20498 | . . . . 5 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubMnd‘(mulGrp‘ℂfld))) |
| 11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubMnd‘(mulGrp‘ℂfld))) |
| 12 | 11 | ad2antrr 726 | . . 3 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ (SubMnd‘(mulGrp‘ℂfld))) |
| 13 | 3 | adantl 481 | . . 3 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
| 14 | simplr 768 | . . 3 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → i ∈ 𝐾) | |
| 15 | eqid 2731 | . . . 4 ⊢ (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld)) | |
| 16 | 15 | submmulgcl 19027 | . . 3 ⊢ ((𝐾 ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ 𝑁 ∈ ℕ0 ∧ i ∈ 𝐾) → (𝑁(.g‘(mulGrp‘ℂfld))i) ∈ 𝐾) |
| 17 | 12, 13, 14, 16 | syl3anc 1373 | . 2 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘(mulGrp‘ℂfld))i) ∈ 𝐾) |
| 18 | 5, 17 | eqeltrrd 2832 | 1 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (i↑𝑁) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ici 11005 ℕcn 12122 ℕ0cn0 12378 ↑cexp 13965 Basecbs 17117 Scalarcsca 17161 SubMndcsubmnd 18687 .gcmg 18977 mulGrpcmgp 20056 SubRingcsubrg 20482 ℂfldccnfld 21289 ℂModcclm 24987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-seq 13906 df-exp 13966 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-mulg 18978 df-cmn 19692 df-mgp 20057 df-ur 20098 df-ring 20151 df-cring 20152 df-subrg 20483 df-cnfld 21290 df-clm 24988 |
| This theorem is referenced by: cmodscmulexp 25047 cphipval 25168 |
| Copyright terms: Public domain | W3C validator |