![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmodscexp | Structured version Visualization version GIF version |
Description: The powers of i belong to the scalar subring of a subcomplex module if i belongs to the scalar subring . (Contributed by AV, 18-Oct-2021.) |
Ref | Expression |
---|---|
cmodscexp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cmodscexp.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cmodscexp | ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (i↑𝑁) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 11217 | . . . 4 ⊢ i ∈ ℂ | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) → i ∈ ℂ) |
3 | nnnn0 12531 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
4 | cnfldexp 21396 | . . 3 ⊢ ((i ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑁(.g‘(mulGrp‘ℂfld))i) = (i↑𝑁)) | |
5 | 2, 3, 4 | syl2an 594 | . 2 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘(mulGrp‘ℂfld))i) = (i↑𝑁)) |
6 | cmodscexp.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
7 | cmodscexp.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
8 | 6, 7 | clmsubrg 25084 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
9 | eqid 2726 | . . . . . 6 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
10 | 9 | subrgsubm 20569 | . . . . 5 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubMnd‘(mulGrp‘ℂfld))) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubMnd‘(mulGrp‘ℂfld))) |
12 | 11 | ad2antrr 724 | . . 3 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ (SubMnd‘(mulGrp‘ℂfld))) |
13 | 3 | adantl 480 | . . 3 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
14 | simplr 767 | . . 3 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → i ∈ 𝐾) | |
15 | eqid 2726 | . . . 4 ⊢ (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld)) | |
16 | 15 | submmulgcl 19111 | . . 3 ⊢ ((𝐾 ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ 𝑁 ∈ ℕ0 ∧ i ∈ 𝐾) → (𝑁(.g‘(mulGrp‘ℂfld))i) ∈ 𝐾) |
17 | 12, 13, 14, 16 | syl3anc 1368 | . 2 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘(mulGrp‘ℂfld))i) ∈ 𝐾) |
18 | 5, 17 | eqeltrrd 2827 | 1 ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (i↑𝑁) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 (class class class)co 7424 ℂcc 11156 ici 11160 ℕcn 12264 ℕ0cn0 12524 ↑cexp 14081 Basecbs 17213 Scalarcsca 17269 SubMndcsubmnd 18772 .gcmg 19061 mulGrpcmgp 20117 SubRingcsubrg 20551 ℂfldccnfld 21343 ℂModcclm 25080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-addf 11237 ax-mulf 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-seq 14022 df-exp 14082 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-grp 18931 df-mulg 19062 df-cmn 19780 df-mgp 20118 df-ur 20165 df-ring 20218 df-cring 20219 df-subrg 20553 df-cnfld 21344 df-clm 25081 |
This theorem is referenced by: cmodscmulexp 25140 cphipval 25262 |
Copyright terms: Public domain | W3C validator |