Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icoseg2 Structured version   Visualization version   GIF version

Theorem dya2icoseg2 31138
Description: For any point and any open interval of containing that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 12-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2icoseg2 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑛,𝑏,𝑥   𝐸,𝑏,𝑥   𝐼,𝑏   𝑋,𝑏,𝑥
Allowed substitution hints:   𝐸(𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑛,𝑏)   𝑋(𝑛)

Proof of Theorem dya2icoseg2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . . . 6 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 eqid 2772 . . . . . 6 (⌊‘(1 − (2 logb 𝑑))) = (⌊‘(1 − (2 logb 𝑑)))
41, 2, 3dya2icoseg 31137 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑑 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))))
54ralrimiva 3126 . . . 4 (𝑋 ∈ ℝ → ∀𝑑 ∈ ℝ+𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))))
653ad2ant1 1113 . . 3 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∀𝑑 ∈ ℝ+𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))))
7 simp3 1118 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → 𝑋𝐸)
8 iooex 12570 . . . . . . . . . 10 (,) ∈ V
98rnex 7426 . . . . . . . . 9 ran (,) ∈ V
10 bastg 21268 . . . . . . . . 9 (ran (,) ∈ V → ran (,) ⊆ (topGen‘ran (,)))
119, 10ax-mp 5 . . . . . . . 8 ran (,) ⊆ (topGen‘ran (,))
12 simp2 1117 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → 𝐸 ∈ ran (,))
1311, 12sseldi 3852 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → 𝐸 ∈ (topGen‘ran (,)))
1413, 1syl6eleqr 2871 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → 𝐸𝐽)
15 eqid 2772 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
1615rexmet 23092 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
17 recms 23676 . . . . . . . . . . 11 fld ∈ CMetSp
18 cmsms 23644 . . . . . . . . . . 11 (ℝfld ∈ CMetSp → ℝfld ∈ MetSp)
19 msxms 22757 . . . . . . . . . . 11 (ℝfld ∈ MetSp → ℝfld ∈ ∞MetSp)
2017, 18, 19mp2b 10 . . . . . . . . . 10 fld ∈ ∞MetSp
21 retopn 23675 . . . . . . . . . . . 12 (topGen‘ran (,)) = (TopOpen‘ℝfld)
221, 21eqtri 2796 . . . . . . . . . . 11 𝐽 = (TopOpen‘ℝfld)
23 rebase 20442 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
24 reds 20452 . . . . . . . . . . . 12 (abs ∘ − ) = (dist‘ℝfld)
2524reseq1i 5684 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ))
2622, 23, 25xmstopn 22754 . . . . . . . . . 10 (ℝfld ∈ ∞MetSp → 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))))
2720, 26ax-mp 5 . . . . . . . . 9 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
2827elmopn2 22748 . . . . . . . 8 (((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) → (𝐸𝐽 ↔ (𝐸 ⊆ ℝ ∧ ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)))
2916, 28ax-mp 5 . . . . . . 7 (𝐸𝐽 ↔ (𝐸 ⊆ ℝ ∧ ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸))
3029simprbi 489 . . . . . 6 (𝐸𝐽 → ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)
3114, 30syl 17 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)
32 oveq1 6977 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) = (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑))
3332sseq1d 3884 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸))
3433rexbidv 3236 . . . . . 6 (𝑥 = 𝑋 → (∃𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸))
3534rspcva 3527 . . . . 5 ((𝑋𝐸 ∧ ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸) → ∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)
367, 31, 35syl2anc 576 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)
37 rpre 12205 . . . . . . 7 (𝑑 ∈ ℝ+𝑑 ∈ ℝ)
3815bl2ioo 23093 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) = ((𝑋𝑑)(,)(𝑋 + 𝑑)))
3938sseq1d 3884 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑑 ∈ ℝ) → ((𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
4037, 39sylan2 583 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑑 ∈ ℝ+) → ((𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
4140rexbidva 3235 . . . . 5 (𝑋 ∈ ℝ → (∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ∃𝑑 ∈ ℝ+ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
42413ad2ant1 1113 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → (∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ∃𝑑 ∈ ℝ+ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
4336, 42mpbid 224 . . 3 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑑 ∈ ℝ+ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸)
44 r19.29 3194 . . 3 ((∀𝑑 ∈ ℝ+𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ∃𝑑 ∈ ℝ+ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → ∃𝑑 ∈ ℝ+ (∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
456, 43, 44syl2anc 576 . 2 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑑 ∈ ℝ+ (∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
46 r19.41v 3282 . . . 4 (∃𝑏 ∈ ran 𝐼((𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) ↔ (∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
47 sstr 3862 . . . . . . 7 ((𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → 𝑏𝐸)
4847anim2i 607 . . . . . 6 ((𝑋𝑏 ∧ (𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸)) → (𝑋𝑏𝑏𝐸))
4948anassrs 460 . . . . 5 (((𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → (𝑋𝑏𝑏𝐸))
5049reximi 3184 . . . 4 (∃𝑏 ∈ ran 𝐼((𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
5146, 50sylbir 227 . . 3 ((∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
5251rexlimivw 3221 . 2 (∃𝑑 ∈ ℝ+ (∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
5345, 52syl 17 1 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wral 3082  wrex 3083  Vcvv 3409  wss 3825   × cxp 5398  ran crn 5401  cres 5402  ccom 5404  cfv 6182  (class class class)co 6970  cmpo 6972  cr 10326  1c1 10328   + caddc 10330  cmin 10662   / cdiv 11090  2c2 11488  cz 11786  +crp 12197  (,)cioo 12547  [,)cico 12549  cfl 12968  cexp 13237  abscabs 14444  distcds 16420  TopOpenctopn 16541  topGenctg 16557  ∞Metcxmet 20222  ballcbl 20224  MetOpencmopn 20227  fldcrefld 20440  ∞MetSpcxms 22620  MetSpcms 22621  CMetSpccms 23628   logb clogb 25033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405  ax-addf 10406  ax-mulf 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-pm 8201  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-fi 8662  df-sup 8693  df-inf 8694  df-oi 8761  df-card 9154  df-cda 9380  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-ioo 12551  df-ioc 12552  df-ico 12553  df-icc 12554  df-fz 12702  df-fzo 12843  df-fl 12970  df-mod 13046  df-seq 13178  df-exp 13238  df-fac 13442  df-bc 13471  df-hash 13499  df-shft 14277  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-limsup 14679  df-clim 14696  df-rlim 14697  df-sum 14894  df-ef 15271  df-sin 15273  df-cos 15274  df-pi 15276  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-starv 16426  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-unif 16434  df-hom 16435  df-cco 16436  df-rest 16542  df-topn 16543  df-0g 16561  df-gsum 16562  df-topgen 16563  df-pt 16564  df-prds 16567  df-xrs 16621  df-qtop 16626  df-imas 16627  df-xps 16629  df-mre 16705  df-mrc 16706  df-acs 16708  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-mulg 18002  df-cntz 18208  df-cmn 18658  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-fbas 20234  df-fg 20235  df-cnfld 20238  df-refld 20441  df-top 21196  df-topon 21213  df-topsp 21235  df-bases 21248  df-cld 21321  df-ntr 21322  df-cls 21323  df-nei 21400  df-lp 21438  df-perf 21439  df-cn 21529  df-cnp 21530  df-haus 21617  df-cmp 21689  df-tx 21864  df-hmeo 22057  df-fil 22148  df-fm 22240  df-flim 22241  df-flf 22242  df-fcls 22243  df-xms 22623  df-ms 22624  df-tms 22625  df-cncf 23179  df-cfil 23551  df-cmet 23553  df-cms 23631  df-limc 24157  df-dv 24158  df-log 24831  df-cxp 24832  df-logb 25034
This theorem is referenced by:  dya2iocnrect  31141
  Copyright terms: Public domain W3C validator