Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icoseg2 Structured version   Visualization version   GIF version

Theorem dya2icoseg2 32145
Description: For any point and any open interval of containing that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 12-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2icoseg2 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑛,𝑏,𝑥   𝐸,𝑏,𝑥   𝐼,𝑏   𝑋,𝑏,𝑥
Allowed substitution hints:   𝐸(𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑛,𝑏)   𝑋(𝑛)

Proof of Theorem dya2icoseg2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . . . 6 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 eqid 2738 . . . . . 6 (⌊‘(1 − (2 logb 𝑑))) = (⌊‘(1 − (2 logb 𝑑)))
41, 2, 3dya2icoseg 32144 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑑 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))))
54ralrimiva 3107 . . . 4 (𝑋 ∈ ℝ → ∀𝑑 ∈ ℝ+𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))))
653ad2ant1 1131 . . 3 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∀𝑑 ∈ ℝ+𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))))
7 simp3 1136 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → 𝑋𝐸)
8 iooex 13031 . . . . . . . . . 10 (,) ∈ V
98rnex 7733 . . . . . . . . 9 ran (,) ∈ V
10 bastg 22024 . . . . . . . . 9 (ran (,) ∈ V → ran (,) ⊆ (topGen‘ran (,)))
119, 10ax-mp 5 . . . . . . . 8 ran (,) ⊆ (topGen‘ran (,))
12 simp2 1135 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → 𝐸 ∈ ran (,))
1311, 12sselid 3915 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → 𝐸 ∈ (topGen‘ran (,)))
1413, 1eleqtrrdi 2850 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → 𝐸𝐽)
15 eqid 2738 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
1615rexmet 23860 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
17 recms 24449 . . . . . . . . . . 11 fld ∈ CMetSp
18 cmsms 24417 . . . . . . . . . . 11 (ℝfld ∈ CMetSp → ℝfld ∈ MetSp)
19 msxms 23515 . . . . . . . . . . 11 (ℝfld ∈ MetSp → ℝfld ∈ ∞MetSp)
2017, 18, 19mp2b 10 . . . . . . . . . 10 fld ∈ ∞MetSp
21 retopn 24448 . . . . . . . . . . . 12 (topGen‘ran (,)) = (TopOpen‘ℝfld)
221, 21eqtri 2766 . . . . . . . . . . 11 𝐽 = (TopOpen‘ℝfld)
23 rebase 20723 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
24 reds 20733 . . . . . . . . . . . 12 (abs ∘ − ) = (dist‘ℝfld)
2524reseq1i 5876 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ))
2622, 23, 25xmstopn 23512 . . . . . . . . . 10 (ℝfld ∈ ∞MetSp → 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))))
2720, 26ax-mp 5 . . . . . . . . 9 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
2827elmopn2 23506 . . . . . . . 8 (((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) → (𝐸𝐽 ↔ (𝐸 ⊆ ℝ ∧ ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)))
2916, 28ax-mp 5 . . . . . . 7 (𝐸𝐽 ↔ (𝐸 ⊆ ℝ ∧ ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸))
3029simprbi 496 . . . . . 6 (𝐸𝐽 → ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)
3114, 30syl 17 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)
32 oveq1 7262 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) = (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑))
3332sseq1d 3948 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸))
3433rexbidv 3225 . . . . . 6 (𝑥 = 𝑋 → (∃𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸))
3534rspcva 3550 . . . . 5 ((𝑋𝐸 ∧ ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸) → ∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)
367, 31, 35syl2anc 583 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)
37 rpre 12667 . . . . . . 7 (𝑑 ∈ ℝ+𝑑 ∈ ℝ)
3815bl2ioo 23861 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) = ((𝑋𝑑)(,)(𝑋 + 𝑑)))
3938sseq1d 3948 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑑 ∈ ℝ) → ((𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
4037, 39sylan2 592 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑑 ∈ ℝ+) → ((𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
4140rexbidva 3224 . . . . 5 (𝑋 ∈ ℝ → (∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ∃𝑑 ∈ ℝ+ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
42413ad2ant1 1131 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → (∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ∃𝑑 ∈ ℝ+ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
4336, 42mpbid 231 . . 3 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑑 ∈ ℝ+ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸)
44 r19.29 3183 . . 3 ((∀𝑑 ∈ ℝ+𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ∃𝑑 ∈ ℝ+ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → ∃𝑑 ∈ ℝ+ (∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
456, 43, 44syl2anc 583 . 2 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑑 ∈ ℝ+ (∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
46 r19.41v 3273 . . . 4 (∃𝑏 ∈ ran 𝐼((𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) ↔ (∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
47 sstr 3925 . . . . . . 7 ((𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → 𝑏𝐸)
4847anim2i 616 . . . . . 6 ((𝑋𝑏 ∧ (𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸)) → (𝑋𝑏𝑏𝐸))
4948anassrs 467 . . . . 5 (((𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → (𝑋𝑏𝑏𝐸))
5049reximi 3174 . . . 4 (∃𝑏 ∈ ran 𝐼((𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
5146, 50sylbir 234 . . 3 ((∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
5251rexlimivw 3210 . 2 (∃𝑑 ∈ ℝ+ (∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
5345, 52syl 17 1 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883   × cxp 5578  ran crn 5581  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  1c1 10803   + caddc 10805  cmin 11135   / cdiv 11562  2c2 11958  cz 12249  +crp 12659  (,)cioo 13008  [,)cico 13010  cfl 13438  cexp 13710  abscabs 14873  distcds 16897  TopOpenctopn 17049  topGenctg 17065  ∞Metcxmet 20495  ballcbl 20497  MetOpencmopn 20500  fldcrefld 20721  ∞MetSpcxms 23378  MetSpcms 23379  CMetSpccms 24401   logb clogb 25819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-refld 20722  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-fcls 23000  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-cfil 24324  df-cmet 24326  df-cms 24404  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618  df-logb 25820
This theorem is referenced by:  dya2iocnrect  32148
  Copyright terms: Public domain W3C validator