Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icoseg2 Structured version   Visualization version   GIF version

Theorem dya2icoseg2 34269
Description: For any point and any open interval of containing that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 12-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2icoseg2 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑛,𝑏,𝑥   𝐸,𝑏,𝑥   𝐼,𝑏   𝑋,𝑏,𝑥
Allowed substitution hints:   𝐸(𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑛,𝑏)   𝑋(𝑛)

Proof of Theorem dya2icoseg2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . . . 6 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 eqid 2729 . . . . . 6 (⌊‘(1 − (2 logb 𝑑))) = (⌊‘(1 − (2 logb 𝑑)))
41, 2, 3dya2icoseg 34268 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑑 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))))
54ralrimiva 3125 . . . 4 (𝑋 ∈ ℝ → ∀𝑑 ∈ ℝ+𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))))
653ad2ant1 1133 . . 3 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∀𝑑 ∈ ℝ+𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))))
7 simp3 1138 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → 𝑋𝐸)
8 iooex 13329 . . . . . . . . . 10 (,) ∈ V
98rnex 7886 . . . . . . . . 9 ran (,) ∈ V
10 bastg 22853 . . . . . . . . 9 (ran (,) ∈ V → ran (,) ⊆ (topGen‘ran (,)))
119, 10ax-mp 5 . . . . . . . 8 ran (,) ⊆ (topGen‘ran (,))
12 simp2 1137 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → 𝐸 ∈ ran (,))
1311, 12sselid 3944 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → 𝐸 ∈ (topGen‘ran (,)))
1413, 1eleqtrrdi 2839 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → 𝐸𝐽)
15 eqid 2729 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
1615rexmet 24679 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
17 recms 25280 . . . . . . . . . . 11 fld ∈ CMetSp
18 cmsms 25248 . . . . . . . . . . 11 (ℝfld ∈ CMetSp → ℝfld ∈ MetSp)
19 msxms 24342 . . . . . . . . . . 11 (ℝfld ∈ MetSp → ℝfld ∈ ∞MetSp)
2017, 18, 19mp2b 10 . . . . . . . . . 10 fld ∈ ∞MetSp
21 retopn 25279 . . . . . . . . . . . 12 (topGen‘ran (,)) = (TopOpen‘ℝfld)
221, 21eqtri 2752 . . . . . . . . . . 11 𝐽 = (TopOpen‘ℝfld)
23 rebase 21515 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
24 reds 21525 . . . . . . . . . . . 12 (abs ∘ − ) = (dist‘ℝfld)
2524reseq1i 5946 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ))
2622, 23, 25xmstopn 24339 . . . . . . . . . 10 (ℝfld ∈ ∞MetSp → 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))))
2720, 26ax-mp 5 . . . . . . . . 9 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
2827elmopn2 24333 . . . . . . . 8 (((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) → (𝐸𝐽 ↔ (𝐸 ⊆ ℝ ∧ ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)))
2916, 28ax-mp 5 . . . . . . 7 (𝐸𝐽 ↔ (𝐸 ⊆ ℝ ∧ ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸))
3029simprbi 496 . . . . . 6 (𝐸𝐽 → ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)
3114, 30syl 17 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)
32 oveq1 7394 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) = (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑))
3332sseq1d 3978 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸))
3433rexbidv 3157 . . . . . 6 (𝑥 = 𝑋 → (∃𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸))
3534rspcva 3586 . . . . 5 ((𝑋𝐸 ∧ ∀𝑥𝐸𝑑 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸) → ∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)
367, 31, 35syl2anc 584 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸)
37 rpre 12960 . . . . . . 7 (𝑑 ∈ ℝ+𝑑 ∈ ℝ)
3815bl2ioo 24680 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) = ((𝑋𝑑)(,)(𝑋 + 𝑑)))
3938sseq1d 3978 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑑 ∈ ℝ) → ((𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
4037, 39sylan2 593 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑑 ∈ ℝ+) → ((𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
4140rexbidva 3155 . . . . 5 (𝑋 ∈ ℝ → (∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ∃𝑑 ∈ ℝ+ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
42413ad2ant1 1133 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → (∃𝑑 ∈ ℝ+ (𝑋(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑑) ⊆ 𝐸 ↔ ∃𝑑 ∈ ℝ+ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
4336, 42mpbid 232 . . 3 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑑 ∈ ℝ+ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸)
44 r19.29 3094 . . 3 ((∀𝑑 ∈ ℝ+𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ∃𝑑 ∈ ℝ+ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → ∃𝑑 ∈ ℝ+ (∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
456, 43, 44syl2anc 584 . 2 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑑 ∈ ℝ+ (∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
46 r19.41v 3167 . . . 4 (∃𝑏 ∈ ran 𝐼((𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) ↔ (∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸))
47 sstr 3955 . . . . . . 7 ((𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → 𝑏𝐸)
4847anim2i 617 . . . . . 6 ((𝑋𝑏 ∧ (𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸)) → (𝑋𝑏𝑏𝐸))
4948anassrs 467 . . . . 5 (((𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → (𝑋𝑏𝑏𝐸))
5049reximi 3067 . . . 4 (∃𝑏 ∈ ran 𝐼((𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
5146, 50sylbir 235 . . 3 ((∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
5251rexlimivw 3130 . 2 (∃𝑑 ∈ ℝ+ (∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝑑)(,)(𝑋 + 𝑑))) ∧ ((𝑋𝑑)(,)(𝑋 + 𝑑)) ⊆ 𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
5345, 52syl 17 1 ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914   × cxp 5636  ran crn 5639  cres 5640  ccom 5642  cfv 6511  (class class class)co 7387  cmpo 7389  cr 11067  1c1 11069   + caddc 11071  cmin 11405   / cdiv 11835  2c2 12241  cz 12529  +crp 12951  (,)cioo 13306  [,)cico 13308  cfl 13752  cexp 14026  abscabs 15200  distcds 17229  TopOpenctopn 17384  topGenctg 17400  ∞Metcxmet 21249  ballcbl 21251  MetOpencmopn 21254  fldcrefld 21513  ∞MetSpcxms 24205  MetSpcms 24206  CMetSpccms 25232   logb clogb 26674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-refld 21514  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-fcls 23828  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-cfil 25155  df-cmet 25157  df-cms 25235  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-logb 26675
This theorem is referenced by:  dya2iocnrect  34272
  Copyright terms: Public domain W3C validator