MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmspropd Structured version   Visualization version   GIF version

Theorem cmspropd 24418
Description: Property deduction for a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cmspropd.1 (𝜑𝐵 = (Base‘𝐾))
cmspropd.2 (𝜑𝐵 = (Base‘𝐿))
cmspropd.3 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
cmspropd.4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
cmspropd (𝜑 → (𝐾 ∈ CMetSp ↔ 𝐿 ∈ CMetSp))

Proof of Theorem cmspropd
StepHypRef Expression
1 cmspropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 cmspropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 cmspropd.3 . . . 4 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
4 cmspropd.4 . . . 4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
51, 2, 3, 4mspropd 23535 . . 3 (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))
61sqxpeqd 5612 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
76reseq2d 5880 . . . . . 6 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
83, 7eqtr3d 2780 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
92sqxpeqd 5612 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
109reseq2d 5880 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
118, 10eqtr3d 2780 . . . 4 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
121, 2eqtr3d 2780 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
1312fveq2d 6760 . . . 4 (𝜑 → (CMet‘(Base‘𝐾)) = (CMet‘(Base‘𝐿)))
1411, 13eleq12d 2833 . . 3 (𝜑 → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (CMet‘(Base‘𝐿))))
155, 14anbi12d 630 . 2 (𝜑 → ((𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))) ↔ (𝐿 ∈ MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (CMet‘(Base‘𝐿)))))
16 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
17 eqid 2738 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
1816, 17iscms 24414 . 2 (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
19 eqid 2738 . . 3 (Base‘𝐿) = (Base‘𝐿)
20 eqid 2738 . . 3 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
2119, 20iscms 24414 . 2 (𝐿 ∈ CMetSp ↔ (𝐿 ∈ MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (CMet‘(Base‘𝐿))))
2215, 18, 213bitr4g 313 1 (𝜑 → (𝐾 ∈ CMetSp ↔ 𝐿 ∈ CMetSp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   × cxp 5578  cres 5582  cfv 6418  Basecbs 16840  distcds 16897  TopOpenctopn 17049  MetSpcms 23379  CMetccmet 24323  CMetSpccms 24401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-top 21951  df-topon 21968  df-topsp 21990  df-xms 23381  df-ms 23382  df-cms 24404
This theorem is referenced by:  srabn  24429
  Copyright terms: Public domain W3C validator