MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmspropd Structured version   Visualization version   GIF version

Theorem cmspropd 25321
Description: Property deduction for a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cmspropd.1 (𝜑𝐵 = (Base‘𝐾))
cmspropd.2 (𝜑𝐵 = (Base‘𝐿))
cmspropd.3 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
cmspropd.4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
cmspropd (𝜑 → (𝐾 ∈ CMetSp ↔ 𝐿 ∈ CMetSp))

Proof of Theorem cmspropd
StepHypRef Expression
1 cmspropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 cmspropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 cmspropd.3 . . . 4 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
4 cmspropd.4 . . . 4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
51, 2, 3, 4mspropd 24424 . . 3 (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))
61sqxpeqd 5710 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
76reseq2d 5985 . . . . . 6 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
83, 7eqtr3d 2767 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
92sqxpeqd 5710 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
109reseq2d 5985 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
118, 10eqtr3d 2767 . . . 4 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
121, 2eqtr3d 2767 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
1312fveq2d 6900 . . . 4 (𝜑 → (CMet‘(Base‘𝐾)) = (CMet‘(Base‘𝐿)))
1411, 13eleq12d 2819 . . 3 (𝜑 → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (CMet‘(Base‘𝐿))))
155, 14anbi12d 630 . 2 (𝜑 → ((𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))) ↔ (𝐿 ∈ MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (CMet‘(Base‘𝐿)))))
16 eqid 2725 . . 3 (Base‘𝐾) = (Base‘𝐾)
17 eqid 2725 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
1816, 17iscms 25317 . 2 (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
19 eqid 2725 . . 3 (Base‘𝐿) = (Base‘𝐿)
20 eqid 2725 . . 3 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
2119, 20iscms 25317 . 2 (𝐿 ∈ CMetSp ↔ (𝐿 ∈ MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (CMet‘(Base‘𝐿))))
2215, 18, 213bitr4g 313 1 (𝜑 → (𝐾 ∈ CMetSp ↔ 𝐿 ∈ CMetSp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098   × cxp 5676  cres 5680  cfv 6549  Basecbs 17183  distcds 17245  TopOpenctopn 17406  MetSpcms 24268  CMetccmet 25226  CMetSpccms 25304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-res 5690  df-iota 6501  df-fun 6551  df-fv 6557  df-top 22840  df-topon 22857  df-topsp 22879  df-xms 24270  df-ms 24271  df-cms 25307
This theorem is referenced by:  srabn  25332
  Copyright terms: Public domain W3C validator