| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfima3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dfima3 | ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima2 6049 | . 2 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | |
| 2 | df-br 5120 | . . . . 5 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 3 | 2 | rexbii 3083 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝑥𝐴𝑦 ↔ ∃𝑥 ∈ 𝐵 〈𝑥, 𝑦〉 ∈ 𝐴) |
| 4 | df-rex 3061 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 5 | 3, 4 | bitri 275 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 6 | 5 | abbii 2802 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} |
| 7 | 1, 6 | eqtri 2758 | 1 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 ∃wrex 3060 〈cop 4607 class class class wbr 5119 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: imadmrn 6057 imassrn 6058 imai 6061 funimaexgOLD 6624 cnvimadfsn 8171 rdglim2 8446 fineqvrep 35126 dfhe3 43799 |
| Copyright terms: Public domain | W3C validator |