![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfima3 | Structured version Visualization version GIF version |
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dfima3 | ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfima2 5709 | . 2 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | |
2 | df-br 4874 | . . . . 5 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
3 | 2 | rexbii 3251 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝑥𝐴𝑦 ↔ ∃𝑥 ∈ 𝐵 〈𝑥, 𝑦〉 ∈ 𝐴) |
4 | df-rex 3123 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
5 | 3, 4 | bitri 267 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
6 | 5 | abbii 2944 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} |
7 | 1, 6 | eqtri 2849 | 1 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1658 ∃wex 1880 ∈ wcel 2166 {cab 2811 ∃wrex 3118 〈cop 4403 class class class wbr 4873 “ cima 5345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4874 df-opab 4936 df-xp 5348 df-cnv 5350 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 |
This theorem is referenced by: imadmrn 5717 imassrn 5718 imai 5719 funimaexg 6208 cnvimadfsn 7568 rdglim2 7794 dfhe3 38909 |
Copyright terms: Public domain | W3C validator |