MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfima3 Structured version   Visualization version   GIF version

Theorem dfima3 5961
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima3 (𝐴𝐵) = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem dfima3
StepHypRef Expression
1 dfima2 5960 . 2 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
2 df-br 5071 . . . . 5 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
32rexbii 3177 . . . 4 (∃𝑥𝐵 𝑥𝐴𝑦 ↔ ∃𝑥𝐵𝑥, 𝑦⟩ ∈ 𝐴)
4 df-rex 3069 . . . 4 (∃𝑥𝐵𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
53, 4bitri 274 . . 3 (∃𝑥𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
65abbii 2809 . 2 {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
71, 6eqtri 2766 1 (𝐴𝐵) = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wrex 3064  cop 4564   class class class wbr 5070  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  imadmrn  5968  imassrn  5969  imai  5971  funimaexg  6504  cnvimadfsn  7959  rdglim2  8234  fineqvrep  32964  dfhe3  41272
  Copyright terms: Public domain W3C validator