MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfima3 Structured version   Visualization version   GIF version

Theorem dfima3 6018
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima3 (𝐴𝐵) = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem dfima3
StepHypRef Expression
1 dfima2 6017 . 2 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
2 df-br 5096 . . . . 5 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
32rexbii 3080 . . . 4 (∃𝑥𝐵 𝑥𝐴𝑦 ↔ ∃𝑥𝐵𝑥, 𝑦⟩ ∈ 𝐴)
4 df-rex 3058 . . . 4 (∃𝑥𝐵𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
53, 4bitri 275 . . 3 (∃𝑥𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
65abbii 2800 . 2 {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
71, 6eqtri 2756 1 (𝐴𝐵) = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wrex 3057  cop 4583   class class class wbr 5095  cima 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634
This theorem is referenced by:  imadmrn  6025  imassrn  6026  imai  6029  cnvimadfsn  8110  rdglim2  8359  fineqvrep  35160  dfhe3  43895
  Copyright terms: Public domain W3C validator