MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuppfn Structured version   Visualization version   GIF version

Theorem elsuppfn 8103
Description: An element of the support of a function with a given domain. (Contributed by AV, 27-May-2019.)
Assertion
Ref Expression
elsuppfn ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆𝑋 ∧ (𝐹𝑆) ≠ 𝑍)))

Proof of Theorem elsuppfn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 suppvalfn 8101 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
21eleq2d 2814 . 2 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ 𝑆 ∈ {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍}))
3 fveq2 6822 . . . 4 (𝑖 = 𝑆 → (𝐹𝑖) = (𝐹𝑆))
43neeq1d 2984 . . 3 (𝑖 = 𝑆 → ((𝐹𝑖) ≠ 𝑍 ↔ (𝐹𝑆) ≠ 𝑍))
54elrab 3648 . 2 (𝑆 ∈ {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍} ↔ (𝑆𝑋 ∧ (𝐹𝑆) ≠ 𝑍))
62, 5bitrdi 287 1 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆𝑋 ∧ (𝐹𝑆) ≠ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3394   Fn wfn 6477  cfv 6482  (class class class)co 7349   supp csupp 8093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-supp 8094
This theorem is referenced by:  fvdifsupp  8104  fvn0elsupp  8113  fvn0elsuppb  8114  rexsupp  8115  suppssr  8128  suppofssd  8136  suppcoss  8140  finnzfsuppd  9263  wemapso2lem  9444  cantnfle  9567  cantnfp1lem2  9575  cantnfp1lem3  9576  cantnfp1  9577  cantnflem1a  9581  cantnflem3  9587  cnfcomlem  9595  cnfcom3  9600  suppssfz  13901  elsuppfnd  32632  fdifsupp  32635  ressupprn  32640  fsuppcurry1  32676  fsuppcurry2  32677  fsuppind  42583  mnringmulrcld  44221  fdivmptf  48546  refdivmptf  48547
  Copyright terms: Public domain W3C validator