MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuppfn Structured version   Visualization version   GIF version

Theorem elsuppfn 8149
Description: An element of the support of a function with a given domain. (Contributed by AV, 27-May-2019.)
Assertion
Ref Expression
elsuppfn ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆𝑋 ∧ (𝐹𝑆) ≠ 𝑍)))

Proof of Theorem elsuppfn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 suppvalfn 8147 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
21eleq2d 2814 . 2 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ 𝑆 ∈ {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍}))
3 fveq2 6858 . . . 4 (𝑖 = 𝑆 → (𝐹𝑖) = (𝐹𝑆))
43neeq1d 2984 . . 3 (𝑖 = 𝑆 → ((𝐹𝑖) ≠ 𝑍 ↔ (𝐹𝑆) ≠ 𝑍))
54elrab 3659 . 2 (𝑆 ∈ {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍} ↔ (𝑆𝑋 ∧ (𝐹𝑆) ≠ 𝑍))
62, 5bitrdi 287 1 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆𝑋 ∧ (𝐹𝑆) ≠ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3405   Fn wfn 6506  cfv 6511  (class class class)co 7387   supp csupp 8139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-supp 8140
This theorem is referenced by:  fvdifsupp  8150  fvn0elsupp  8159  fvn0elsuppb  8160  rexsupp  8161  suppssr  8174  suppofssd  8182  suppcoss  8186  finnzfsuppd  9324  wemapso2lem  9505  cantnfle  9624  cantnfp1lem2  9632  cantnfp1lem3  9633  cantnfp1  9634  cantnflem1a  9638  cantnflem3  9644  cnfcomlem  9652  cnfcom3  9657  suppssfz  13959  elsuppfnd  32605  fdifsupp  32608  ressupprn  32613  fsuppcurry1  32648  fsuppcurry2  32649  fsuppind  42578  mnringmulrcld  44217  fdivmptf  48530  refdivmptf  48531
  Copyright terms: Public domain W3C validator