| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsuppfn | Structured version Visualization version GIF version | ||
| Description: An element of the support of a function with a given domain. (Contributed by AV, 27-May-2019.) |
| Ref | Expression |
|---|---|
| elsuppfn | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppvalfn 8098 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ 𝑆 ∈ {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍})) |
| 3 | fveq2 6822 | . . . 4 ⊢ (𝑖 = 𝑆 → (𝐹‘𝑖) = (𝐹‘𝑆)) | |
| 4 | 3 | neeq1d 2987 | . . 3 ⊢ (𝑖 = 𝑆 → ((𝐹‘𝑖) ≠ 𝑍 ↔ (𝐹‘𝑆) ≠ 𝑍)) |
| 5 | 4 | elrab 3642 | . 2 ⊢ (𝑆 ∈ {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍} ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍)) |
| 6 | 2, 5 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 supp csupp 8090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-supp 8091 |
| This theorem is referenced by: fvdifsupp 8101 fvn0elsupp 8110 fvn0elsuppb 8111 rexsupp 8112 suppssr 8125 suppofssd 8133 suppcoss 8137 finnzfsuppd 9257 wemapso2lem 9438 cantnfle 9561 cantnfp1lem2 9569 cantnfp1lem3 9570 cantnfp1 9571 cantnflem1a 9575 cantnflem3 9581 cnfcomlem 9589 cnfcom3 9594 suppssfz 13901 elsuppfnd 32663 fdifsupp 32666 ressupprn 32671 fsuppcurry1 32707 fsuppcurry2 32708 fsuppind 42682 mnringmulrcld 44320 fdivmptf 48641 refdivmptf 48642 |
| Copyright terms: Public domain | W3C validator |