![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsuppfn | Structured version Visualization version GIF version |
Description: An element of the support of a function with a given domain. (Contributed by AV, 27-May-2019.) |
Ref | Expression |
---|---|
elsuppfn | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppvalfn 8192 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) | |
2 | 1 | eleq2d 2825 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ 𝑆 ∈ {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍})) |
3 | fveq2 6907 | . . . 4 ⊢ (𝑖 = 𝑆 → (𝐹‘𝑖) = (𝐹‘𝑆)) | |
4 | 3 | neeq1d 2998 | . . 3 ⊢ (𝑖 = 𝑆 → ((𝐹‘𝑖) ≠ 𝑍 ↔ (𝐹‘𝑆) ≠ 𝑍)) |
5 | 4 | elrab 3695 | . 2 ⊢ (𝑆 ∈ {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍} ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍)) |
6 | 2, 5 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {crab 3433 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 supp csupp 8184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-supp 8185 |
This theorem is referenced by: fvdifsupp 8195 fvn0elsupp 8204 fvn0elsuppb 8205 rexsupp 8206 suppssr 8219 suppofssd 8227 suppcoss 8231 finnzfsuppd 9411 wemapso2lem 9590 cantnfle 9709 cantnfp1lem2 9717 cantnfp1lem3 9718 cantnfp1 9719 cantnflem1a 9723 cantnflem3 9729 cnfcomlem 9737 cnfcom3 9742 suppssfz 14032 elsuppfnd 32697 fdifsupp 32700 ressupprn 32705 fsuppcurry1 32743 fsuppcurry2 32744 fsuppind 42577 mnringmulrcld 44224 fdivmptf 48391 refdivmptf 48392 |
Copyright terms: Public domain | W3C validator |