|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elsuppfn | Structured version Visualization version GIF version | ||
| Description: An element of the support of a function with a given domain. (Contributed by AV, 27-May-2019.) | 
| Ref | Expression | 
|---|---|
| elsuppfn | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | suppvalfn 8194 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) | |
| 2 | 1 | eleq2d 2826 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ 𝑆 ∈ {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍})) | 
| 3 | fveq2 6905 | . . . 4 ⊢ (𝑖 = 𝑆 → (𝐹‘𝑖) = (𝐹‘𝑆)) | |
| 4 | 3 | neeq1d 2999 | . . 3 ⊢ (𝑖 = 𝑆 → ((𝐹‘𝑖) ≠ 𝑍 ↔ (𝐹‘𝑆) ≠ 𝑍)) | 
| 5 | 4 | elrab 3691 | . 2 ⊢ (𝑆 ∈ {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍} ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍)) | 
| 6 | 2, 5 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 {crab 3435 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 supp csupp 8186 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-supp 8187 | 
| This theorem is referenced by: fvdifsupp 8197 fvn0elsupp 8206 fvn0elsuppb 8207 rexsupp 8208 suppssr 8221 suppofssd 8229 suppcoss 8233 finnzfsuppd 9414 wemapso2lem 9593 cantnfle 9712 cantnfp1lem2 9720 cantnfp1lem3 9721 cantnfp1 9722 cantnflem1a 9726 cantnflem3 9732 cnfcomlem 9740 cnfcom3 9745 suppssfz 14036 elsuppfnd 32692 fdifsupp 32695 ressupprn 32700 fsuppcurry1 32737 fsuppcurry2 32738 fsuppind 42605 mnringmulrcld 44252 fdivmptf 48467 refdivmptf 48468 | 
| Copyright terms: Public domain | W3C validator |