MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuppfn Structured version   Visualization version   GIF version

Theorem elsuppfn 7913
Description: An element of the support of a function with a given domain. (Contributed by AV, 27-May-2019.)
Assertion
Ref Expression
elsuppfn ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆𝑋 ∧ (𝐹𝑆) ≠ 𝑍)))

Proof of Theorem elsuppfn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 suppvalfn 7911 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
21eleq2d 2823 . 2 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ 𝑆 ∈ {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍}))
3 fveq2 6717 . . . 4 (𝑖 = 𝑆 → (𝐹𝑖) = (𝐹𝑆))
43neeq1d 3000 . . 3 (𝑖 = 𝑆 → ((𝐹𝑖) ≠ 𝑍 ↔ (𝐹𝑆) ≠ 𝑍))
54elrab 3602 . 2 (𝑆 ∈ {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍} ↔ (𝑆𝑋 ∧ (𝐹𝑆) ≠ 𝑍))
62, 5bitrdi 290 1 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆𝑋 ∧ (𝐹𝑆) ≠ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  {crab 3065   Fn wfn 6375  cfv 6380  (class class class)co 7213   supp csupp 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-supp 7904
This theorem is referenced by:  fvn0elsupp  7922  fvn0elsuppb  7923  rexsupp  7924  suppssOLD  7937  suppssr  7938  suppofssd  7945  suppcoss  7949  wemapso2lem  9168  cantnfle  9286  cantnfp1lem2  9294  cantnfp1lem3  9295  cantnfp1  9296  cantnflem1a  9300  cantnflem3  9306  cnfcomlem  9314  cnfcom3  9319  suppssfz  13567  fvdifsupp  30738  ressupprn  30744  fsuppcurry1  30780  fsuppcurry2  30781  fsuppind  39989  finnzfsuppd  41498  mnringmulrcld  41519  fdivmptf  45560  refdivmptf  45561
  Copyright terms: Public domain W3C validator