MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oprswap Structured version   Visualization version   GIF version

Theorem f1oprswap 6877
Description: A two-element swap is a bijection on a pair. (Contributed by Mario Carneiro, 23-Jan-2015.)
Assertion
Ref Expression
f1oprswap ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵})

Proof of Theorem f1oprswap
StepHypRef Expression
1 f1osng 6874 . . . . 5 ((𝐴𝑉𝐴𝑉) → {⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴})
21anidms 566 . . . 4 (𝐴𝑉 → {⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴})
32ad2antrr 723 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = 𝐵) → {⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴})
4 dfsn2 4641 . . . . . 6 {⟨𝐴, 𝐴⟩} = {⟨𝐴, 𝐴⟩, ⟨𝐴, 𝐴⟩}
5 opeq2 4874 . . . . . . 7 (𝐴 = 𝐵 → ⟨𝐴, 𝐴⟩ = ⟨𝐴, 𝐵⟩)
6 opeq1 4873 . . . . . . 7 (𝐴 = 𝐵 → ⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐴⟩)
75, 6preq12d 4745 . . . . . 6 (𝐴 = 𝐵 → {⟨𝐴, 𝐴⟩, ⟨𝐴, 𝐴⟩} = {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩})
84, 7eqtrid 2783 . . . . 5 (𝐴 = 𝐵 → {⟨𝐴, 𝐴⟩} = {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩})
9 dfsn2 4641 . . . . . 6 {𝐴} = {𝐴, 𝐴}
10 preq2 4738 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
119, 10eqtrid 2783 . . . . 5 (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵})
128, 11, 11f1oeq123d 6827 . . . 4 (𝐴 = 𝐵 → ({⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴} ↔ {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵}))
1312adantl 481 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = 𝐵) → ({⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴} ↔ {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵}))
143, 13mpbid 231 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = 𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵})
15 simpll 764 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → 𝐴𝑉)
16 simplr 766 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → 𝐵𝑊)
17 simpr 484 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → 𝐴𝐵)
18 fnprg 6607 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐵𝑊𝐴𝑉) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵})
1915, 16, 16, 15, 17, 18syl221anc 1380 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵})
20 cnvsng 6222 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
21 cnvsng 6222 . . . . . . . . . 10 ((𝐵𝑊𝐴𝑉) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
2221ancoms 458 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
2320, 22uneq12d 4164 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}) = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐴, 𝐵⟩}))
24 uncom 4153 . . . . . . . 8 ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐴, 𝐵⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
2523, 24eqtrdi 2787 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}))
2625adantr 480 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}))
27 df-pr 4631 . . . . . . . 8 {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
2827cnveqi 5874 . . . . . . 7 {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
29 cnvun 6142 . . . . . . 7 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
3028, 29eqtri 2759 . . . . . 6 {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
3126, 30, 273eqtr4g 2796 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩})
3231fneq1d 6642 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ({⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵} ↔ {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵}))
3319, 32mpbird 257 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵})
34 dff1o4 6841 . . 3 ({⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵} ↔ ({⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵} ∧ {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵}))
3519, 33, 34sylanbrc 582 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵})
3614, 35pm2.61dane 3028 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wne 2939  cun 3946  {csn 4628  {cpr 4630  cop 4634  ccnv 5675   Fn wfn 6538  1-1-ontowf1o 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550
This theorem is referenced by:  fveqf1o  7304  f1ofvswap  7307  symg2bas  19302  subfacp1lem2a  34470
  Copyright terms: Public domain W3C validator