MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oprswap Structured version   Visualization version   GIF version

Theorem f1oprswap 6807
Description: A two-element swap is a bijection on a pair. (Contributed by Mario Carneiro, 23-Jan-2015.)
Assertion
Ref Expression
f1oprswap ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵})

Proof of Theorem f1oprswap
StepHypRef Expression
1 f1osng 6804 . . . . 5 ((𝐴𝑉𝐴𝑉) → {⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴})
21anidms 566 . . . 4 (𝐴𝑉 → {⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴})
32ad2antrr 726 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = 𝐵) → {⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴})
4 dfsn2 4586 . . . . . 6 {⟨𝐴, 𝐴⟩} = {⟨𝐴, 𝐴⟩, ⟨𝐴, 𝐴⟩}
5 opeq2 4823 . . . . . . 7 (𝐴 = 𝐵 → ⟨𝐴, 𝐴⟩ = ⟨𝐴, 𝐵⟩)
6 opeq1 4822 . . . . . . 7 (𝐴 = 𝐵 → ⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐴⟩)
75, 6preq12d 4691 . . . . . 6 (𝐴 = 𝐵 → {⟨𝐴, 𝐴⟩, ⟨𝐴, 𝐴⟩} = {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩})
84, 7eqtrid 2778 . . . . 5 (𝐴 = 𝐵 → {⟨𝐴, 𝐴⟩} = {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩})
9 dfsn2 4586 . . . . . 6 {𝐴} = {𝐴, 𝐴}
10 preq2 4684 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
119, 10eqtrid 2778 . . . . 5 (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵})
128, 11, 11f1oeq123d 6757 . . . 4 (𝐴 = 𝐵 → ({⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴} ↔ {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵}))
1312adantl 481 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = 𝐵) → ({⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴} ↔ {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵}))
143, 13mpbid 232 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = 𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵})
15 simpll 766 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → 𝐴𝑉)
16 simplr 768 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → 𝐵𝑊)
17 simpr 484 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → 𝐴𝐵)
18 fnprg 6540 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐵𝑊𝐴𝑉) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵})
1915, 16, 16, 15, 17, 18syl221anc 1383 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵})
20 cnvsng 6170 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
21 cnvsng 6170 . . . . . . . . . 10 ((𝐵𝑊𝐴𝑉) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
2221ancoms 458 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
2320, 22uneq12d 4116 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}) = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐴, 𝐵⟩}))
24 uncom 4105 . . . . . . . 8 ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐴, 𝐵⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
2523, 24eqtrdi 2782 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}))
2625adantr 480 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}))
27 df-pr 4576 . . . . . . . 8 {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
2827cnveqi 5813 . . . . . . 7 {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
29 cnvun 6089 . . . . . . 7 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
3028, 29eqtri 2754 . . . . . 6 {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
3126, 30, 273eqtr4g 2791 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩})
3231fneq1d 6574 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ({⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵} ↔ {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵}))
3319, 32mpbird 257 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵})
34 dff1o4 6771 . . 3 ({⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵} ↔ ({⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵} ∧ {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵}))
3519, 33, 34sylanbrc 583 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵})
3614, 35pm2.61dane 3015 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  cun 3895  {csn 4573  {cpr 4575  cop 4579  ccnv 5613   Fn wfn 6476  1-1-ontowf1o 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488
This theorem is referenced by:  fveqf1o  7236  f1ofvswap  7240  symg2bas  19305  subfacp1lem2a  35224
  Copyright terms: Public domain W3C validator