MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oprswap Structured version   Visualization version   GIF version

Theorem f1oprswap 6906
Description: A two-element swap is a bijection on a pair. (Contributed by Mario Carneiro, 23-Jan-2015.)
Assertion
Ref Expression
f1oprswap ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵})

Proof of Theorem f1oprswap
StepHypRef Expression
1 f1osng 6903 . . . . 5 ((𝐴𝑉𝐴𝑉) → {⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴})
21anidms 566 . . . 4 (𝐴𝑉 → {⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴})
32ad2antrr 725 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = 𝐵) → {⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴})
4 dfsn2 4661 . . . . . 6 {⟨𝐴, 𝐴⟩} = {⟨𝐴, 𝐴⟩, ⟨𝐴, 𝐴⟩}
5 opeq2 4898 . . . . . . 7 (𝐴 = 𝐵 → ⟨𝐴, 𝐴⟩ = ⟨𝐴, 𝐵⟩)
6 opeq1 4897 . . . . . . 7 (𝐴 = 𝐵 → ⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐴⟩)
75, 6preq12d 4766 . . . . . 6 (𝐴 = 𝐵 → {⟨𝐴, 𝐴⟩, ⟨𝐴, 𝐴⟩} = {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩})
84, 7eqtrid 2792 . . . . 5 (𝐴 = 𝐵 → {⟨𝐴, 𝐴⟩} = {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩})
9 dfsn2 4661 . . . . . 6 {𝐴} = {𝐴, 𝐴}
10 preq2 4759 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
119, 10eqtrid 2792 . . . . 5 (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵})
128, 11, 11f1oeq123d 6856 . . . 4 (𝐴 = 𝐵 → ({⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴} ↔ {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵}))
1312adantl 481 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = 𝐵) → ({⟨𝐴, 𝐴⟩}:{𝐴}–1-1-onto→{𝐴} ↔ {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵}))
143, 13mpbid 232 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = 𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵})
15 simpll 766 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → 𝐴𝑉)
16 simplr 768 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → 𝐵𝑊)
17 simpr 484 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → 𝐴𝐵)
18 fnprg 6637 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐵𝑊𝐴𝑉) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵})
1915, 16, 16, 15, 17, 18syl221anc 1381 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵})
20 cnvsng 6254 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
21 cnvsng 6254 . . . . . . . . . 10 ((𝐵𝑊𝐴𝑉) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
2221ancoms 458 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
2320, 22uneq12d 4192 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}) = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐴, 𝐵⟩}))
24 uncom 4181 . . . . . . . 8 ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐴, 𝐵⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
2523, 24eqtrdi 2796 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}))
2625adantr 480 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}))
27 df-pr 4651 . . . . . . . 8 {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
2827cnveqi 5899 . . . . . . 7 {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
29 cnvun 6174 . . . . . . 7 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
3028, 29eqtri 2768 . . . . . 6 {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐵, 𝐴⟩})
3126, 30, 273eqtr4g 2805 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩})
3231fneq1d 6672 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ({⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵} ↔ {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵}))
3319, 32mpbird 257 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵})
34 dff1o4 6870 . . 3 ({⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵} ↔ ({⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵} ∧ {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩} Fn {𝐴, 𝐵}))
3519, 33, 34sylanbrc 582 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵})
3614, 35pm2.61dane 3035 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩, ⟨𝐵, 𝐴⟩}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  cun 3974  {csn 4648  {cpr 4650  cop 4654  ccnv 5699   Fn wfn 6568  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  fveqf1o  7338  f1ofvswap  7342  symg2bas  19434  subfacp1lem2a  35148
  Copyright terms: Public domain W3C validator