![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnpropg | Structured version Visualization version GIF version |
Description: The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
Ref | Expression |
---|---|
rnpropg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4632 | . . 3 ⊢ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) | |
2 | 1 | rneqi 5937 | . 2 ⊢ ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) |
3 | rnsnopg 6221 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝐴, 𝐶⟩} = {𝐶}) | |
4 | 3 | adantr 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {⟨𝐴, 𝐶⟩} = {𝐶}) |
5 | rnsnopg 6221 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → ran {⟨𝐵, 𝐷⟩} = {𝐷}) | |
6 | 5 | adantl 483 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {⟨𝐵, 𝐷⟩} = {𝐷}) |
7 | 4, 6 | uneq12d 4165 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = ({𝐶} ∪ {𝐷})) |
8 | rnun 6146 | . . 3 ⊢ ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) | |
9 | df-pr 4632 | . . 3 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
10 | 7, 8, 9 | 3eqtr4g 2798 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = {𝐶, 𝐷}) |
11 | 2, 10 | eqtrid 2785 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∪ cun 3947 {csn 4629 {cpr 4631 ⟨cop 4635 ran crn 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 |
This theorem is referenced by: funcnvtp 6612 funcnvqp 6613 umgr2v2eedg 28781 esumsnf 33062 poimirlem9 36497 sge0sn 45095 |
Copyright terms: Public domain | W3C validator |