MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnpropg Structured version   Visualization version   GIF version

Theorem rnpropg 6242
Description: The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.)
Assertion
Ref Expression
rnpropg ((𝐴𝑉𝐵𝑊) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷})

Proof of Theorem rnpropg
StepHypRef Expression
1 df-pr 4629 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
21rneqi 5948 . 2 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
3 rnsnopg 6241 . . . . 5 (𝐴𝑉 → ran {⟨𝐴, 𝐶⟩} = {𝐶})
43adantr 480 . . . 4 ((𝐴𝑉𝐵𝑊) → ran {⟨𝐴, 𝐶⟩} = {𝐶})
5 rnsnopg 6241 . . . . 5 (𝐵𝑊 → ran {⟨𝐵, 𝐷⟩} = {𝐷})
65adantl 481 . . . 4 ((𝐴𝑉𝐵𝑊) → ran {⟨𝐵, 𝐷⟩} = {𝐷})
74, 6uneq12d 4169 . . 3 ((𝐴𝑉𝐵𝑊) → (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = ({𝐶} ∪ {𝐷}))
8 rnun 6165 . . 3 ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩})
9 df-pr 4629 . . 3 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
107, 8, 93eqtr4g 2802 . 2 ((𝐴𝑉𝐵𝑊) → ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = {𝐶, 𝐷})
112, 10eqtrid 2789 1 ((𝐴𝑉𝐵𝑊) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cun 3949  {csn 4626  {cpr 4628  cop 4632  ran crn 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696
This theorem is referenced by:  funcnvtp  6629  funcnvqp  6630  umgr2v2eedg  29542  esumsnf  34065  poimirlem9  37636  sge0sn  46394
  Copyright terms: Public domain W3C validator