![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnpropg | Structured version Visualization version GIF version |
Description: The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
Ref | Expression |
---|---|
rnpropg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4631 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
2 | 1 | rneqi 5936 | . 2 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) |
3 | rnsnopg 6220 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐶〉} = {𝐶}) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐴, 𝐶〉} = {𝐶}) |
5 | rnsnopg 6220 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → ran {〈𝐵, 𝐷〉} = {𝐷}) | |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐵, 𝐷〉} = {𝐷}) |
7 | 4, 6 | uneq12d 4164 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) = ({𝐶} ∪ {𝐷})) |
8 | rnun 6145 | . . 3 ⊢ ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) | |
9 | df-pr 4631 | . . 3 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
10 | 7, 8, 9 | 3eqtr4g 2796 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = {𝐶, 𝐷}) |
11 | 2, 10 | eqtrid 2783 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∪ cun 3946 {csn 4628 {cpr 4630 〈cop 4634 ran crn 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: funcnvtp 6611 funcnvqp 6612 umgr2v2eedg 29214 esumsnf 33526 poimirlem9 36961 sge0sn 45554 |
Copyright terms: Public domain | W3C validator |