Step | Hyp | Ref
| Expression |
1 | | rhmmpl.b |
. 2
⊢ 𝐵 = (Base‘𝑃) |
2 | | eqid 2732 |
. 2
⊢
(1r‘𝑃) = (1r‘𝑃) |
3 | | eqid 2732 |
. 2
⊢
(1r‘𝑄) = (1r‘𝑄) |
4 | | eqid 2732 |
. 2
⊢
(.r‘𝑃) = (.r‘𝑃) |
5 | | eqid 2732 |
. 2
⊢
(.r‘𝑄) = (.r‘𝑄) |
6 | | rhmmpl.p |
. . 3
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
7 | | rhmmpl.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
8 | | rhmmpl.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) |
9 | | rhmrcl1 20247 |
. . . 4
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
11 | 6, 7, 10 | mplringd 41114 |
. 2
⊢ (𝜑 → 𝑃 ∈ Ring) |
12 | | rhmmpl.q |
. . 3
⊢ 𝑄 = (𝐼 mPoly 𝑆) |
13 | | rhmrcl2 20248 |
. . . 4
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
14 | 8, 13 | syl 17 |
. . 3
⊢ (𝜑 → 𝑆 ∈ Ring) |
15 | 12, 7, 14 | mplringd 41114 |
. 2
⊢ (𝜑 → 𝑄 ∈ Ring) |
16 | | eqid 2732 |
. . . . . 6
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
17 | | eqid 2732 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
18 | | eqid 2732 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
19 | 6, 16, 17, 18, 2, 7, 10 | mpl1 21562 |
. . . . 5
⊢ (𝜑 → (1r‘𝑃) = (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
20 | 19 | coeq2d 5860 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ (1r‘𝑃)) = (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))))) |
21 | | eqid 2732 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
22 | | eqid 2732 |
. . . . . . 7
⊢
(Base‘𝑆) =
(Base‘𝑆) |
23 | 21, 22 | rhmf 20255 |
. . . . . 6
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
24 | 8, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
25 | 21, 18 | ringidcl 20076 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
26 | 10, 25 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
27 | 21, 17 | ring0cl 20077 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ (Base‘𝑅)) |
28 | 10, 27 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
29 | 26, 28 | ifcld 4573 |
. . . . . 6
⊢ (𝜑 → if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
30 | 29 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) →
if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
31 | 24, 30 | cofmpt 7126 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))))) |
32 | | fvif 6904 |
. . . . . 6
⊢ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) = if(𝑑 = (𝐼 × {0}), (𝐻‘(1r‘𝑅)), (𝐻‘(0g‘𝑅))) |
33 | | eqid 2732 |
. . . . . . . . 9
⊢
(1r‘𝑆) = (1r‘𝑆) |
34 | 18, 33 | rhm1 20259 |
. . . . . . . 8
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → (𝐻‘(1r‘𝑅)) = (1r‘𝑆)) |
35 | 8, 34 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐻‘(1r‘𝑅)) = (1r‘𝑆)) |
36 | | rhmghm 20254 |
. . . . . . . 8
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆)) |
37 | | eqid 2732 |
. . . . . . . . 9
⊢
(0g‘𝑆) = (0g‘𝑆) |
38 | 17, 37 | ghmid 19092 |
. . . . . . . 8
⊢ (𝐻 ∈ (𝑅 GrpHom 𝑆) → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
39 | 8, 36, 38 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
40 | 35, 39 | ifeq12d 4548 |
. . . . . 6
⊢ (𝜑 → if(𝑑 = (𝐼 × {0}), (𝐻‘(1r‘𝑅)), (𝐻‘(0g‘𝑅))) = if(𝑑 = (𝐼 × {0}), (1r‘𝑆), (0g‘𝑆))) |
41 | 32, 40 | eqtrid 2784 |
. . . . 5
⊢ (𝜑 → (𝐻‘if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) = if(𝑑 = (𝐼 × {0}), (1r‘𝑆), (0g‘𝑆))) |
42 | 41 | mpteq2dv 5249 |
. . . 4
⊢ (𝜑 → (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑑 = (𝐼 × {0}), (1r‘𝑆), (0g‘𝑆)))) |
43 | 20, 31, 42 | 3eqtrd 2776 |
. . 3
⊢ (𝜑 → (𝐻 ∘ (1r‘𝑃)) = (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑑 = (𝐼 × {0}), (1r‘𝑆), (0g‘𝑆)))) |
44 | | rhmmpl.f |
. . . 4
⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) |
45 | | coeq2 5856 |
. . . 4
⊢ (𝑝 = (1r‘𝑃) → (𝐻 ∘ 𝑝) = (𝐻 ∘ (1r‘𝑃))) |
46 | 1, 2 | ringidcl 20076 |
. . . . 5
⊢ (𝑃 ∈ Ring →
(1r‘𝑃)
∈ 𝐵) |
47 | 11, 46 | syl 17 |
. . . 4
⊢ (𝜑 → (1r‘𝑃) ∈ 𝐵) |
48 | 8, 47 | coexd 41044 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ (1r‘𝑃)) ∈ V) |
49 | 44, 45, 47, 48 | fvmptd3 7018 |
. . 3
⊢ (𝜑 → (𝐹‘(1r‘𝑃)) = (𝐻 ∘ (1r‘𝑃))) |
50 | 12, 16, 37, 33, 3, 7, 14 | mpl1 21562 |
. . 3
⊢ (𝜑 → (1r‘𝑄) = (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑑 = (𝐼 × {0}), (1r‘𝑆), (0g‘𝑆)))) |
51 | 43, 49, 50 | 3eqtr4d 2782 |
. 2
⊢ (𝜑 → (𝐹‘(1r‘𝑃)) = (1r‘𝑄)) |
52 | | eqid 2732 |
. . . 4
⊢
(Base‘𝑄) =
(Base‘𝑄) |
53 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐼 ∈ 𝑉) |
54 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐻 ∈ (𝑅 RingHom 𝑆)) |
55 | | simprl 769 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
56 | | simprr 771 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
57 | 6, 12, 1, 52, 4, 5,
53, 54, 55, 56 | rhmcomulmpl 41121 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐻 ∘ (𝑥(.r‘𝑃)𝑦)) = ((𝐻 ∘ 𝑥)(.r‘𝑄)(𝐻 ∘ 𝑦))) |
58 | | coeq2 5856 |
. . . 4
⊢ (𝑝 = (𝑥(.r‘𝑃)𝑦) → (𝐻 ∘ 𝑝) = (𝐻 ∘ (𝑥(.r‘𝑃)𝑦))) |
59 | 11 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ Ring) |
60 | 1, 4, 59, 55, 56 | ringcld 20073 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑃)𝑦) ∈ 𝐵) |
61 | | ovexd 7440 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑃)𝑦) ∈ V) |
62 | 54, 61 | coexd 41044 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐻 ∘ (𝑥(.r‘𝑃)𝑦)) ∈ V) |
63 | 44, 58, 60, 62 | fvmptd3 7018 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥(.r‘𝑃)𝑦)) = (𝐻 ∘ (𝑥(.r‘𝑃)𝑦))) |
64 | | coeq2 5856 |
. . . . 5
⊢ (𝑝 = 𝑥 → (𝐻 ∘ 𝑝) = (𝐻 ∘ 𝑥)) |
65 | 54, 55 | coexd 41044 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐻 ∘ 𝑥) ∈ V) |
66 | 44, 64, 55, 65 | fvmptd3 7018 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑥) = (𝐻 ∘ 𝑥)) |
67 | | coeq2 5856 |
. . . . 5
⊢ (𝑝 = 𝑦 → (𝐻 ∘ 𝑝) = (𝐻 ∘ 𝑦)) |
68 | 54, 56 | coexd 41044 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐻 ∘ 𝑦) ∈ V) |
69 | 44, 67, 56, 68 | fvmptd3 7018 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑦) = (𝐻 ∘ 𝑦)) |
70 | 66, 69 | oveq12d 7423 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑥)(.r‘𝑄)(𝐹‘𝑦)) = ((𝐻 ∘ 𝑥)(.r‘𝑄)(𝐻 ∘ 𝑦))) |
71 | 57, 63, 70 | 3eqtr4d 2782 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥(.r‘𝑃)𝑦)) = ((𝐹‘𝑥)(.r‘𝑄)(𝐹‘𝑦))) |
72 | | eqid 2732 |
. 2
⊢
(+g‘𝑃) = (+g‘𝑃) |
73 | | eqid 2732 |
. 2
⊢
(+g‘𝑄) = (+g‘𝑄) |
74 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐼 ∈ 𝑉) |
75 | | ghmmhm 19096 |
. . . . . 6
⊢ (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
76 | 8, 36, 75 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
77 | 76 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
78 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) |
79 | 6, 12, 1, 52, 74, 77, 78 | mhmcompl 41117 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝐻 ∘ 𝑝) ∈ (Base‘𝑄)) |
80 | 79, 44 | fmptd 7110 |
. 2
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑄)) |
81 | 76 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
82 | 6, 12, 1, 52, 72, 73, 53, 81, 55, 56 | mhmcoaddmpl 41120 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐻 ∘ (𝑥(+g‘𝑃)𝑦)) = ((𝐻 ∘ 𝑥)(+g‘𝑄)(𝐻 ∘ 𝑦))) |
83 | | coeq2 5856 |
. . . 4
⊢ (𝑝 = (𝑥(+g‘𝑃)𝑦) → (𝐻 ∘ 𝑝) = (𝐻 ∘ (𝑥(+g‘𝑃)𝑦))) |
84 | 11 | ringgrpd 20058 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Grp) |
85 | 84 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑃 ∈ Grp) |
86 | 1, 72, 85, 55, 56 | grpcld 18829 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑃)𝑦) ∈ 𝐵) |
87 | | ovexd 7440 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑃)𝑦) ∈ V) |
88 | 54, 87 | coexd 41044 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐻 ∘ (𝑥(+g‘𝑃)𝑦)) ∈ V) |
89 | 44, 83, 86, 88 | fvmptd3 7018 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥(+g‘𝑃)𝑦)) = (𝐻 ∘ (𝑥(+g‘𝑃)𝑦))) |
90 | 66, 69 | oveq12d 7423 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑥)(+g‘𝑄)(𝐹‘𝑦)) = ((𝐻 ∘ 𝑥)(+g‘𝑄)(𝐻 ∘ 𝑦))) |
91 | 82, 89, 90 | 3eqtr4d 2782 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥(+g‘𝑃)𝑦)) = ((𝐹‘𝑥)(+g‘𝑄)(𝐹‘𝑦))) |
92 | 1, 2, 3, 4, 5, 11,
15, 51, 71, 52, 72, 73, 80, 91 | isrhmd 20258 |
1
⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑄)) |