Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmmpl Structured version   Visualization version   GIF version

Theorem rhmmpl 41789
Description: Provide a ring homomorphism between two polynomial algebras over their respective base rings given a ring homomorphism between the two base rings. Compare pwsco2rhm 20447. TODO: Currently mhmvlin 22317 would have to be moved up. Investigate the usefulness of surrounding theorems like mndvcl 22311 and the difference between mhmvlin 22317, ofco 7712, and ofco2 22371. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmmpl.p 𝑃 = (𝐼 mPoly 𝑅)
rhmmpl.q 𝑄 = (𝐼 mPoly 𝑆)
rhmmpl.b 𝐵 = (Base‘𝑃)
rhmmpl.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmmpl.i (𝜑𝐼𝑉)
rhmmpl.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmmpl (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Distinct variable groups:   𝑃,𝑝   𝐻,𝑝   𝑄,𝑝   𝐵,𝑝   𝜑,𝑝
Allowed substitution hints:   𝑅(𝑝)   𝑆(𝑝)   𝐹(𝑝)   𝐼(𝑝)   𝑉(𝑝)

Proof of Theorem rhmmpl
Dummy variables 𝑥 𝑦 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmmpl.b . 2 𝐵 = (Base‘𝑃)
2 eqid 2727 . 2 (1r𝑃) = (1r𝑃)
3 eqid 2727 . 2 (1r𝑄) = (1r𝑄)
4 eqid 2727 . 2 (.r𝑃) = (.r𝑃)
5 eqid 2727 . 2 (.r𝑄) = (.r𝑄)
6 rhmmpl.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
7 rhmmpl.i . . 3 (𝜑𝐼𝑉)
8 rhmmpl.h . . . 4 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
9 rhmrcl1 20420 . . . 4 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
108, 9syl 17 . . 3 (𝜑𝑅 ∈ Ring)
116, 7, 10mplringd 41781 . 2 (𝜑𝑃 ∈ Ring)
12 rhmmpl.q . . 3 𝑄 = (𝐼 mPoly 𝑆)
13 rhmrcl2 20421 . . . 4 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
148, 13syl 17 . . 3 (𝜑𝑆 ∈ Ring)
1512, 7, 14mplringd 41781 . 2 (𝜑𝑄 ∈ Ring)
16 eqid 2727 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
17 eqid 2727 . . . . . 6 (0g𝑅) = (0g𝑅)
18 eqid 2727 . . . . . 6 (1r𝑅) = (1r𝑅)
196, 16, 17, 18, 2, 7, 10mpl1 21959 . . . . 5 (𝜑 → (1r𝑃) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
2019coeq2d 5867 . . . 4 (𝜑 → (𝐻 ∘ (1r𝑃)) = (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))))
21 eqid 2727 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2727 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2321, 22rhmf 20429 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
248, 23syl 17 . . . . 5 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
2521, 18ringidcl 20207 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
2610, 25syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
2721, 17ring0cl 20208 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
2810, 27syl 17 . . . . . . 7 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
2926, 28ifcld 4576 . . . . . 6 (𝜑 → if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3029adantr 479 . . . . 5 ((𝜑𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3124, 30cofmpt 7145 . . . 4 (𝜑 → (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))))
32 fvif 6916 . . . . . 6 (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) = if(𝑑 = (𝐼 × {0}), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅)))
33 eqid 2727 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
3418, 33rhm1 20433 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → (𝐻‘(1r𝑅)) = (1r𝑆))
358, 34syl 17 . . . . . . 7 (𝜑 → (𝐻‘(1r𝑅)) = (1r𝑆))
36 rhmghm 20428 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
37 eqid 2727 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
3817, 37ghmid 19181 . . . . . . . 8 (𝐻 ∈ (𝑅 GrpHom 𝑆) → (𝐻‘(0g𝑅)) = (0g𝑆))
398, 36, 383syl 18 . . . . . . 7 (𝜑 → (𝐻‘(0g𝑅)) = (0g𝑆))
4035, 39ifeq12d 4551 . . . . . 6 (𝜑 → if(𝑑 = (𝐼 × {0}), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅))) = if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆)))
4132, 40eqtrid 2779 . . . . 5 (𝜑 → (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) = if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆)))
4241mpteq2dv 5252 . . . 4 (𝜑 → (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
4320, 31, 423eqtrd 2771 . . 3 (𝜑 → (𝐻 ∘ (1r𝑃)) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
44 rhmmpl.f . . . 4 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
45 coeq2 5863 . . . 4 (𝑝 = (1r𝑃) → (𝐻𝑝) = (𝐻 ∘ (1r𝑃)))
461, 2ringidcl 20207 . . . . 5 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝐵)
4711, 46syl 17 . . . 4 (𝜑 → (1r𝑃) ∈ 𝐵)
488, 47coexd 41721 . . . 4 (𝜑 → (𝐻 ∘ (1r𝑃)) ∈ V)
4944, 45, 47, 48fvmptd3 7031 . . 3 (𝜑 → (𝐹‘(1r𝑃)) = (𝐻 ∘ (1r𝑃)))
5012, 16, 37, 33, 3, 7, 14mpl1 21959 . . 3 (𝜑 → (1r𝑄) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
5143, 49, 503eqtr4d 2777 . 2 (𝜑 → (𝐹‘(1r𝑃)) = (1r𝑄))
52 eqid 2727 . . . 4 (Base‘𝑄) = (Base‘𝑄)
537adantr 479 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐼𝑉)
548adantr 479 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐻 ∈ (𝑅 RingHom 𝑆))
55 simprl 769 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
56 simprr 771 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
576, 12, 1, 52, 4, 5, 53, 54, 55, 56rhmcomulmpl 41788 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(.r𝑃)𝑦)) = ((𝐻𝑥)(.r𝑄)(𝐻𝑦)))
58 coeq2 5863 . . . 4 (𝑝 = (𝑥(.r𝑃)𝑦) → (𝐻𝑝) = (𝐻 ∘ (𝑥(.r𝑃)𝑦)))
5911adantr 479 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
601, 4, 59, 55, 56ringcld 20204 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
61 ovexd 7459 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑃)𝑦) ∈ V)
6254, 61coexd 41721 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(.r𝑃)𝑦)) ∈ V)
6344, 58, 60, 62fvmptd3 7031 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(.r𝑃)𝑦)) = (𝐻 ∘ (𝑥(.r𝑃)𝑦)))
64 coeq2 5863 . . . . 5 (𝑝 = 𝑥 → (𝐻𝑝) = (𝐻𝑥))
6554, 55coexd 41721 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑥) ∈ V)
6644, 64, 55, 65fvmptd3 7031 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) = (𝐻𝑥))
67 coeq2 5863 . . . . 5 (𝑝 = 𝑦 → (𝐻𝑝) = (𝐻𝑦))
6854, 56coexd 41721 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑦) ∈ V)
6944, 67, 56, 68fvmptd3 7031 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) = (𝐻𝑦))
7066, 69oveq12d 7442 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(.r𝑄)(𝐹𝑦)) = ((𝐻𝑥)(.r𝑄)(𝐻𝑦)))
7157, 63, 703eqtr4d 2777 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(.r𝑃)𝑦)) = ((𝐹𝑥)(.r𝑄)(𝐹𝑦)))
72 eqid 2727 . 2 (+g𝑃) = (+g𝑃)
73 eqid 2727 . 2 (+g𝑄) = (+g𝑄)
747adantr 479 . . . 4 ((𝜑𝑝𝐵) → 𝐼𝑉)
75 ghmmhm 19185 . . . . . 6 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
768, 36, 753syl 18 . . . . 5 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
7776adantr 479 . . . 4 ((𝜑𝑝𝐵) → 𝐻 ∈ (𝑅 MndHom 𝑆))
78 simpr 483 . . . 4 ((𝜑𝑝𝐵) → 𝑝𝐵)
796, 12, 1, 52, 74, 77, 78mhmcompl 41784 . . 3 ((𝜑𝑝𝐵) → (𝐻𝑝) ∈ (Base‘𝑄))
8079, 44fmptd 7127 . 2 (𝜑𝐹:𝐵⟶(Base‘𝑄))
8176adantr 479 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐻 ∈ (𝑅 MndHom 𝑆))
826, 12, 1, 52, 72, 73, 53, 81, 55, 56mhmcoaddmpl 41787 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(+g𝑃)𝑦)) = ((𝐻𝑥)(+g𝑄)(𝐻𝑦)))
83 coeq2 5863 . . . 4 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝐻𝑝) = (𝐻 ∘ (𝑥(+g𝑃)𝑦)))
8411ringgrpd 20187 . . . . . 6 (𝜑𝑃 ∈ Grp)
8584adantr 479 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Grp)
861, 72, 85, 55, 56grpcld 18909 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
87 ovexd 7459 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) ∈ V)
8854, 87coexd 41721 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(+g𝑃)𝑦)) ∈ V)
8944, 83, 86, 88fvmptd3 7031 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(+g𝑃)𝑦)) = (𝐻 ∘ (𝑥(+g𝑃)𝑦)))
9066, 69oveq12d 7442 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g𝑄)(𝐹𝑦)) = ((𝐻𝑥)(+g𝑄)(𝐻𝑦)))
9182, 89, 903eqtr4d 2777 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(+g𝑃)𝑦)) = ((𝐹𝑥)(+g𝑄)(𝐹𝑦)))
921, 2, 3, 4, 5, 11, 15, 51, 71, 52, 72, 73, 80, 91isrhmd 20432 1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3428  Vcvv 3471  ifcif 4530  {csn 4630  cmpt 5233   × cxp 5678  ccnv 5679  cima 5683  ccom 5684  wf 6547  cfv 6551  (class class class)co 7424  m cmap 8849  Fincfn 8968  0cc0 11144  cn 12248  0cn0 12508  Basecbs 17185  +gcplusg 17238  .rcmulr 17239  0gc0g 17426   MndHom cmhm 18743  Grpcgrp 18895   GrpHom cghm 19172  1rcur 20126  Ringcrg 20178   RingHom crh 20413   mPoly cmpl 21844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7689  df-ofr 7690  df-om 7875  df-1st 7997  df-2nd 7998  df-supp 8170  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-map 8851  df-pm 8852  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9392  df-sup 9471  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-fz 13523  df-fzo 13666  df-seq 14005  df-hash 14328  df-struct 17121  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-sca 17254  df-vsca 17255  df-ip 17256  df-tset 17257  df-ple 17258  df-ds 17260  df-hom 17262  df-cco 17263  df-0g 17428  df-gsum 17429  df-prds 17434  df-pws 17436  df-mre 17571  df-mrc 17572  df-acs 17574  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18745  df-submnd 18746  df-grp 18898  df-minusg 18899  df-mulg 19029  df-subg 19083  df-ghm 19173  df-cntz 19273  df-cmn 19742  df-abl 19743  df-mgp 20080  df-rng 20098  df-ur 20127  df-ring 20180  df-rhm 20416  df-subrng 20488  df-subrg 20513  df-psr 21847  df-mpl 21849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator