MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmmpl Structured version   Visualization version   GIF version

Theorem rhmmpl 22270
Description: Provide a ring homomorphism between two polynomial algebras over their respective base rings given a ring homomorphism between the two base rings. Compare pwsco2rhm 20412. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmmpl.p 𝑃 = (𝐼 mPoly 𝑅)
rhmmpl.q 𝑄 = (𝐼 mPoly 𝑆)
rhmmpl.b 𝐵 = (Base‘𝑃)
rhmmpl.f 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
rhmmpl.i (𝜑𝐼𝑉)
rhmmpl.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
rhmmpl (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Distinct variable groups:   𝑃,𝑝   𝐻,𝑝   𝑄,𝑝   𝐵,𝑝   𝜑,𝑝
Allowed substitution hints:   𝑅(𝑝)   𝑆(𝑝)   𝐹(𝑝)   𝐼(𝑝)   𝑉(𝑝)

Proof of Theorem rhmmpl
Dummy variables 𝑥 𝑦 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmmpl.b . 2 𝐵 = (Base‘𝑃)
2 eqid 2729 . 2 (1r𝑃) = (1r𝑃)
3 eqid 2729 . 2 (1r𝑄) = (1r𝑄)
4 eqid 2729 . 2 (.r𝑃) = (.r𝑃)
5 eqid 2729 . 2 (.r𝑄) = (.r𝑄)
6 rhmmpl.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
7 rhmmpl.i . . 3 (𝜑𝐼𝑉)
8 rhmmpl.h . . . 4 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
9 rhmrcl1 20385 . . . 4 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
108, 9syl 17 . . 3 (𝜑𝑅 ∈ Ring)
116, 7, 10mplringd 21932 . 2 (𝜑𝑃 ∈ Ring)
12 rhmmpl.q . . 3 𝑄 = (𝐼 mPoly 𝑆)
13 rhmrcl2 20386 . . . 4 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
148, 13syl 17 . . 3 (𝜑𝑆 ∈ Ring)
1512, 7, 14mplringd 21932 . 2 (𝜑𝑄 ∈ Ring)
16 eqid 2729 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
17 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
18 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
196, 16, 17, 18, 2, 7, 10mpl1 21921 . . . . 5 (𝜑 → (1r𝑃) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
2019coeq2d 5826 . . . 4 (𝜑 → (𝐻 ∘ (1r𝑃)) = (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))))
21 eqid 2729 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2729 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2321, 22rhmf 20394 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
248, 23syl 17 . . . . 5 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
2521, 18ringidcl 20174 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
2610, 25syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
2721, 17ring0cl 20176 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
2810, 27syl 17 . . . . . . 7 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
2926, 28ifcld 4535 . . . . . 6 (𝜑 → if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3029adantr 480 . . . . 5 ((𝜑𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3124, 30cofmpt 7104 . . . 4 (𝜑 → (𝐻 ∘ (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))))
32 fvif 6874 . . . . . 6 (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) = if(𝑑 = (𝐼 × {0}), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅)))
33 eqid 2729 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
3418, 33rhm1 20398 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → (𝐻‘(1r𝑅)) = (1r𝑆))
358, 34syl 17 . . . . . . 7 (𝜑 → (𝐻‘(1r𝑅)) = (1r𝑆))
36 rhmghm 20393 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
37 eqid 2729 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
3817, 37ghmid 19154 . . . . . . . 8 (𝐻 ∈ (𝑅 GrpHom 𝑆) → (𝐻‘(0g𝑅)) = (0g𝑆))
398, 36, 383syl 18 . . . . . . 7 (𝜑 → (𝐻‘(0g𝑅)) = (0g𝑆))
4035, 39ifeq12d 4510 . . . . . 6 (𝜑 → if(𝑑 = (𝐼 × {0}), (𝐻‘(1r𝑅)), (𝐻‘(0g𝑅))) = if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆)))
4132, 40eqtrid 2776 . . . . 5 (𝜑 → (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) = if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆)))
4241mpteq2dv 5201 . . . 4 (𝜑 → (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘if(𝑑 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
4320, 31, 423eqtrd 2768 . . 3 (𝜑 → (𝐻 ∘ (1r𝑃)) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
44 rhmmpl.f . . . 4 𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))
45 coeq2 5822 . . . 4 (𝑝 = (1r𝑃) → (𝐻𝑝) = (𝐻 ∘ (1r𝑃)))
461, 2ringidcl 20174 . . . . 5 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝐵)
4711, 46syl 17 . . . 4 (𝜑 → (1r𝑃) ∈ 𝐵)
488, 47coexd 7907 . . . 4 (𝜑 → (𝐻 ∘ (1r𝑃)) ∈ V)
4944, 45, 47, 48fvmptd3 6991 . . 3 (𝜑 → (𝐹‘(1r𝑃)) = (𝐻 ∘ (1r𝑃)))
5012, 16, 37, 33, 3, 7, 14mpl1 21921 . . 3 (𝜑 → (1r𝑄) = (𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑑 = (𝐼 × {0}), (1r𝑆), (0g𝑆))))
5143, 49, 503eqtr4d 2774 . 2 (𝜑 → (𝐹‘(1r𝑃)) = (1r𝑄))
52 eqid 2729 . . . 4 (Base‘𝑄) = (Base‘𝑄)
538adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐻 ∈ (𝑅 RingHom 𝑆))
54 simprl 770 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
55 simprr 772 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
566, 12, 1, 52, 4, 5, 53, 54, 55rhmcomulmpl 22269 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(.r𝑃)𝑦)) = ((𝐻𝑥)(.r𝑄)(𝐻𝑦)))
57 coeq2 5822 . . . 4 (𝑝 = (𝑥(.r𝑃)𝑦) → (𝐻𝑝) = (𝐻 ∘ (𝑥(.r𝑃)𝑦)))
5811adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
591, 4, 58, 54, 55ringcld 20169 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
60 ovexd 7422 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑃)𝑦) ∈ V)
6153, 60coexd 7907 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(.r𝑃)𝑦)) ∈ V)
6244, 57, 59, 61fvmptd3 6991 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(.r𝑃)𝑦)) = (𝐻 ∘ (𝑥(.r𝑃)𝑦)))
63 coeq2 5822 . . . . 5 (𝑝 = 𝑥 → (𝐻𝑝) = (𝐻𝑥))
6453, 54coexd 7907 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑥) ∈ V)
6544, 63, 54, 64fvmptd3 6991 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) = (𝐻𝑥))
66 coeq2 5822 . . . . 5 (𝑝 = 𝑦 → (𝐻𝑝) = (𝐻𝑦))
6753, 55coexd 7907 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑦) ∈ V)
6844, 66, 55, 67fvmptd3 6991 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) = (𝐻𝑦))
6965, 68oveq12d 7405 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(.r𝑄)(𝐹𝑦)) = ((𝐻𝑥)(.r𝑄)(𝐻𝑦)))
7056, 62, 693eqtr4d 2774 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(.r𝑃)𝑦)) = ((𝐹𝑥)(.r𝑄)(𝐹𝑦)))
71 eqid 2729 . 2 (+g𝑃) = (+g𝑃)
72 eqid 2729 . 2 (+g𝑄) = (+g𝑄)
73 ghmmhm 19158 . . . . . 6 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
748, 36, 733syl 18 . . . . 5 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
7574adantr 480 . . . 4 ((𝜑𝑝𝐵) → 𝐻 ∈ (𝑅 MndHom 𝑆))
76 simpr 484 . . . 4 ((𝜑𝑝𝐵) → 𝑝𝐵)
776, 12, 1, 52, 75, 76mhmcompl 22267 . . 3 ((𝜑𝑝𝐵) → (𝐻𝑝) ∈ (Base‘𝑄))
7877, 44fmptd 7086 . 2 (𝜑𝐹:𝐵⟶(Base‘𝑄))
7953, 36, 733syl 18 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐻 ∈ (𝑅 MndHom 𝑆))
806, 12, 1, 52, 71, 72, 79, 54, 55mhmcoaddmpl 22268 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(+g𝑃)𝑦)) = ((𝐻𝑥)(+g𝑄)(𝐻𝑦)))
81 coeq2 5822 . . . 4 (𝑝 = (𝑥(+g𝑃)𝑦) → (𝐻𝑝) = (𝐻 ∘ (𝑥(+g𝑃)𝑦)))
8211ringgrpd 20151 . . . . . 6 (𝜑𝑃 ∈ Grp)
8382adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Grp)
841, 71, 83, 54, 55grpcld 18879 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) ∈ 𝐵)
85 ovexd 7422 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑃)𝑦) ∈ V)
8653, 85coexd 7907 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻 ∘ (𝑥(+g𝑃)𝑦)) ∈ V)
8744, 81, 84, 86fvmptd3 6991 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(+g𝑃)𝑦)) = (𝐻 ∘ (𝑥(+g𝑃)𝑦)))
8865, 68oveq12d 7405 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g𝑄)(𝐹𝑦)) = ((𝐻𝑥)(+g𝑄)(𝐻𝑦)))
8980, 87, 883eqtr4d 2774 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥(+g𝑃)𝑦)) = ((𝐹𝑥)(+g𝑄)(𝐹𝑦)))
901, 2, 3, 4, 5, 11, 15, 51, 70, 52, 71, 72, 78, 89isrhmd 20397 1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  ifcif 4488  {csn 4589  cmpt 5188   × cxp 5636  ccnv 5637  cima 5641  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  0cc0 11068  cn 12186  0cn0 12442  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   MndHom cmhm 18708  Grpcgrp 18865   GrpHom cghm 19144  1rcur 20090  Ringcrg 20142   RingHom crh 20378   mPoly cmpl 21815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-psr 21818  df-mpl 21820
This theorem is referenced by:  rhmply1  22273
  Copyright terms: Public domain W3C validator