| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coexg | Structured version Visualization version GIF version | ||
| Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| coexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossxp 6261 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | |
| 2 | dmexg 7897 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom 𝐵 ∈ V) | |
| 3 | rnexg 7898 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 4 | xpexg 7744 | . . 3 ⊢ ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V) | |
| 5 | 2, 3, 4 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (dom 𝐵 × ran 𝐴) ∈ V) |
| 6 | ssexg 5293 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 × cxp 5652 dom cdm 5654 ran crn 5655 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: coex 7926 coexd 7927 suppco 8205 fsuppco2 9415 fsuppcor 9416 mapfienlem2 9418 wemapwe 9711 cofsmo 10283 relexpsucnnr 15044 supcvg 15872 imasle 17537 setcco 18096 estrcco 18142 pwsco1mhm 18810 pwsco2mhm 18811 efmndov 18859 efmndcl 18860 symgov 19365 symgcl 19366 gsumval3lem2 19887 gsumzf1o 19893 f1lindf 21782 evls1sca 22261 tngds 24587 climcncf 24844 motplusg 28521 tocycfv 33120 smatfval 33826 eulerpartlemmf 34407 hgt750lemg 34686 cossex 38437 tgrpov 40767 erngmul 40825 erngmul-rN 40833 dvamulr 41031 dvavadd 41034 dvhmulr 41105 mendmulr 43208 relexp0a 43740 choicefi 45224 climexp 45634 dvsinax 45942 stoweidlem27 46056 stoweidlem31 46060 stoweidlem59 46088 grimco 47902 uspgrbisymrelALT 48130 rngccoALTV 48246 ringccoALTV 48280 itcoval1 48643 itcoval2 48644 itcoval3 48645 itcovalsucov 48648 |
| Copyright terms: Public domain | W3C validator |