![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coexg | Structured version Visualization version GIF version |
Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
coexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossxp 6272 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | |
2 | dmexg 7894 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom 𝐵 ∈ V) | |
3 | rnexg 7895 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
4 | xpexg 7737 | . . 3 ⊢ ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V) | |
5 | 2, 3, 4 | syl2anr 598 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (dom 𝐵 × ran 𝐴) ∈ V) |
6 | ssexg 5324 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 588 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 × cxp 5675 dom cdm 5677 ran crn 5678 ∘ ccom 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 |
This theorem is referenced by: coex 7921 suppco 8191 fsuppco2 9398 fsuppcor 9399 mapfienlem2 9401 wemapwe 9692 cofsmo 10264 relexpsucnnr 14972 supcvg 15802 imasle 17469 setcco 18033 estrcco 18081 pwsco1mhm 18713 pwsco2mhm 18714 efmndov 18762 efmndcl 18763 symgov 19251 symgcl 19252 gsumval3lem2 19774 gsumzf1o 19780 f1lindf 21377 evls1sca 21842 tngds 24164 tngdsOLD 24165 climcncf 24416 motplusg 27793 tocycfv 32268 smatfval 32775 eulerpartlemmf 33374 hgt750lemg 33666 cossex 37289 tgrpov 39619 erngmul 39677 erngmul-rN 39685 dvamulr 39883 dvavadd 39886 dvhmulr 39957 coexd 41048 mendmulr 41930 relexp0a 42467 choicefi 43899 climexp 44321 dvsinax 44629 stoweidlem27 44743 stoweidlem31 44747 stoweidlem59 44775 uspgrbisymrelALT 46533 rngccoALTV 46886 ringccoALTV 46949 itcoval1 47349 itcoval2 47350 itcoval3 47351 itcovalsucov 47354 |
Copyright terms: Public domain | W3C validator |