Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coexg | Structured version Visualization version GIF version |
Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
coexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossxp 6204 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | |
2 | dmexg 7810 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom 𝐵 ∈ V) | |
3 | rnexg 7811 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
4 | xpexg 7654 | . . 3 ⊢ ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V) | |
5 | 2, 3, 4 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (dom 𝐵 × ran 𝐴) ∈ V) |
6 | ssexg 5264 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3897 × cxp 5612 dom cdm 5614 ran crn 5615 ∘ ccom 5618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 |
This theorem is referenced by: coex 7837 suppco 8084 fsuppco2 9252 fsuppcor 9253 mapfienlem2 9255 wemapwe 9546 cofsmo 10118 relexpsucnnr 14827 supcvg 15659 imasle 17323 setcco 17887 estrcco 17935 pwsco1mhm 18559 pwsco2mhm 18560 efmndov 18608 efmndcl 18609 symgov 19079 symgcl 19080 gsumval3lem2 19594 gsumzf1o 19600 f1lindf 21127 evls1sca 21587 tngds 23909 tngdsOLD 23910 climcncf 24161 motplusg 27133 tocycfv 31604 smatfval 31984 eulerpartlemmf 32583 hgt750lemg 32875 cossex 36679 tgrpov 39009 erngmul 39067 erngmul-rN 39075 dvamulr 39273 dvavadd 39276 dvhmulr 39347 mendmulr 41264 relexp0a 41634 choicefi 43056 climexp 43471 dvsinax 43779 stoweidlem27 43893 stoweidlem31 43897 stoweidlem59 43925 uspgrbisymrelALT 45657 rngccoALTV 45886 ringccoALTV 45949 itcoval1 46349 itcoval2 46350 itcoval3 46351 itcovalsucov 46354 |
Copyright terms: Public domain | W3C validator |