| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coexg | Structured version Visualization version GIF version | ||
| Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| coexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossxp 6226 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | |
| 2 | dmexg 7839 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom 𝐵 ∈ V) | |
| 3 | rnexg 7840 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 4 | xpexg 7691 | . . 3 ⊢ ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V) | |
| 5 | 2, 3, 4 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (dom 𝐵 × ran 𝐴) ∈ V) |
| 6 | ssexg 5265 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 × cxp 5619 dom cdm 5621 ran crn 5622 ∘ ccom 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: coex 7868 coexd 7869 suppco 8144 fsuppco2 9296 fsuppcor 9297 mapfienlem2 9299 wemapwe 9596 cofsmo 10169 relexpsucnnr 14936 supcvg 15767 imasle 17431 setcco 17994 estrcco 18040 pwsco1mhm 18744 pwsco2mhm 18745 efmndov 18793 efmndcl 18794 symgov 19300 symgcl 19301 gsumval3lem2 19822 gsumzf1o 19828 f1lindf 21763 evls1sca 22241 tngds 24566 climcncf 24823 motplusg 28523 tocycfv 33087 smatfval 33831 eulerpartlemmf 34411 hgt750lemg 34690 cossex 38544 tgrpov 40870 erngmul 40928 erngmul-rN 40936 dvamulr 41134 dvavadd 41137 dvhmulr 41208 mendmulr 43304 relexp0a 43836 choicefi 45324 climexp 45732 dvsinax 46038 stoweidlem27 46152 stoweidlem31 46156 stoweidlem59 46184 grimco 48016 uspgrbisymrelALT 48282 rngccoALTV 48398 ringccoALTV 48432 itcoval1 48791 itcoval2 48792 itcoval3 48793 itcovalsucov 48796 |
| Copyright terms: Public domain | W3C validator |