| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coexg | Structured version Visualization version GIF version | ||
| Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| coexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossxp 6224 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | |
| 2 | dmexg 7841 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom 𝐵 ∈ V) | |
| 3 | rnexg 7842 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 4 | xpexg 7690 | . . 3 ⊢ ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V) | |
| 5 | 2, 3, 4 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (dom 𝐵 × ran 𝐴) ∈ V) |
| 6 | ssexg 5265 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 × cxp 5621 dom cdm 5623 ran crn 5624 ∘ ccom 5627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: coex 7870 coexd 7871 suppco 8146 fsuppco2 9312 fsuppcor 9313 mapfienlem2 9315 wemapwe 9612 cofsmo 10182 relexpsucnnr 14950 supcvg 15781 imasle 17445 setcco 18008 estrcco 18054 pwsco1mhm 18724 pwsco2mhm 18725 efmndov 18773 efmndcl 18774 symgov 19281 symgcl 19282 gsumval3lem2 19803 gsumzf1o 19809 f1lindf 21747 evls1sca 22226 tngds 24552 climcncf 24809 motplusg 28505 tocycfv 33064 smatfval 33764 eulerpartlemmf 34345 hgt750lemg 34624 cossex 38398 tgrpov 40730 erngmul 40788 erngmul-rN 40796 dvamulr 40994 dvavadd 40997 dvhmulr 41068 mendmulr 43160 relexp0a 43692 choicefi 45181 climexp 45590 dvsinax 45898 stoweidlem27 46012 stoweidlem31 46016 stoweidlem59 46044 grimco 47877 uspgrbisymrelALT 48143 rngccoALTV 48259 ringccoALTV 48293 itcoval1 48652 itcoval2 48653 itcoval3 48654 itcovalsucov 48657 |
| Copyright terms: Public domain | W3C validator |