Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coexg | Structured version Visualization version GIF version |
Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
coexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossxp 6135 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | |
2 | dmexg 7681 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom 𝐵 ∈ V) | |
3 | rnexg 7682 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
4 | xpexg 7535 | . . 3 ⊢ ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V) | |
5 | 2, 3, 4 | syl2anr 600 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (dom 𝐵 × ran 𝐴) ∈ V) |
6 | ssexg 5216 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 590 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 Vcvv 3408 ⊆ wss 3866 × cxp 5549 dom cdm 5551 ran crn 5552 ∘ ccom 5555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 |
This theorem is referenced by: coex 7708 suppco 7948 fsuppco2 9019 fsuppcor 9020 mapfienlem2 9022 wemapwe 9312 cofsmo 9883 relexpsucnnr 14588 supcvg 15420 imasle 17028 setcco 17589 estrcco 17637 pwsco1mhm 18258 pwsco2mhm 18259 efmndov 18308 efmndcl 18309 symgov 18776 symgcl 18777 gsumval3lem2 19291 gsumzf1o 19297 f1lindf 20784 evls1sca 21239 tngds 23546 climcncf 23797 motplusg 26633 tocycfv 31095 smatfval 31459 eulerpartlemmf 32054 hgt750lemg 32346 cossex 36279 tgrpov 38499 erngmul 38557 erngmul-rN 38565 dvamulr 38763 dvavadd 38766 dvhmulr 38837 mendmulr 40716 relexp0a 41001 choicefi 42413 climexp 42821 dvsinax 43129 stoweidlem27 43243 stoweidlem31 43247 stoweidlem59 43275 uspgrbisymrelALT 44990 rngccoALTV 45219 ringccoALTV 45282 itcoval1 45682 itcoval2 45683 itcoval3 45684 itcovalsucov 45687 |
Copyright terms: Public domain | W3C validator |