![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coexg | Structured version Visualization version GIF version |
Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
coexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossxp 5959 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | |
2 | dmexg 7426 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom 𝐵 ∈ V) | |
3 | rnexg 7427 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
4 | xpexg 7288 | . . 3 ⊢ ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V) | |
5 | 2, 3, 4 | syl2anr 587 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (dom 𝐵 × ran 𝐴) ∈ V) |
6 | ssexg 5081 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 578 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2048 Vcvv 3412 ⊆ wss 3828 × cxp 5402 dom cdm 5404 ran crn 5405 ∘ ccom 5408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-sep 5058 ax-nul 5065 ax-pow 5117 ax-pr 5184 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ral 3090 df-rex 3091 df-rab 3094 df-v 3414 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-nul 4178 df-if 4349 df-pw 4422 df-sn 4440 df-pr 4442 df-op 4446 df-uni 4711 df-br 4928 df-opab 4990 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 |
This theorem is referenced by: coex 7448 suppco 7670 supp0cosupp0OLD 7673 imacosuppOLD 7675 fsuppco2 8657 fsuppcor 8658 mapfienlem2 8660 wemapwe 8950 cofsmo 9485 relexpsucnnr 14239 supcvg 15065 imasle 16646 setcco 17195 estrcco 17232 pwsco1mhm 17832 pwsco2mhm 17833 symgov 18273 symgcl 18274 gsumval3lem2 18774 gsumzf1o 18780 evls1sca 20183 f1lindf 20662 tngds 22954 climcncf 23205 motplusg 26024 smatfval 30693 eulerpartlemmf 31269 hgt750lemg 31564 cossex 35087 tgrpov 37307 erngmul 37365 erngmul-rN 37373 dvamulr 37571 dvavadd 37574 dvhmulr 37645 mendmulr 39162 relexp0a 39402 choicefi 40867 climexp 41296 dvsinax 41606 stoweidlem27 41722 stoweidlem31 41726 stoweidlem59 41754 uspgrbisymrelALT 43372 rngccoALTV 43597 ringccoALTV 43660 |
Copyright terms: Public domain | W3C validator |