| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coexg | Structured version Visualization version GIF version | ||
| Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| coexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossxp 6219 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | |
| 2 | dmexg 7831 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom 𝐵 ∈ V) | |
| 3 | rnexg 7832 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 4 | xpexg 7683 | . . 3 ⊢ ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V) | |
| 5 | 2, 3, 4 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (dom 𝐵 × ran 𝐴) ∈ V) |
| 6 | ssexg 5261 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 × cxp 5614 dom cdm 5616 ran crn 5617 ∘ ccom 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 |
| This theorem is referenced by: coex 7860 coexd 7861 suppco 8136 fsuppco2 9287 fsuppcor 9288 mapfienlem2 9290 wemapwe 9587 cofsmo 10160 relexpsucnnr 14932 supcvg 15763 imasle 17427 setcco 17990 estrcco 18036 pwsco1mhm 18740 pwsco2mhm 18741 efmndov 18789 efmndcl 18790 symgov 19297 symgcl 19298 gsumval3lem2 19819 gsumzf1o 19825 f1lindf 21760 evls1sca 22239 tngds 24564 climcncf 24821 motplusg 28521 tocycfv 33076 smatfval 33806 eulerpartlemmf 34386 hgt750lemg 34665 cossex 38462 tgrpov 40793 erngmul 40851 erngmul-rN 40859 dvamulr 41057 dvavadd 41060 dvhmulr 41131 mendmulr 43223 relexp0a 43755 choicefi 45243 climexp 45651 dvsinax 45957 stoweidlem27 46071 stoweidlem31 46075 stoweidlem59 46103 grimco 47926 uspgrbisymrelALT 48192 rngccoALTV 48308 ringccoALTV 48342 itcoval1 48701 itcoval2 48702 itcoval3 48703 itcovalsucov 48706 |
| Copyright terms: Public domain | W3C validator |