![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coexg | Structured version Visualization version GIF version |
Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
coexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossxp 6293 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | |
2 | dmexg 7923 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom 𝐵 ∈ V) | |
3 | rnexg 7924 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
4 | xpexg 7768 | . . 3 ⊢ ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V) | |
5 | 2, 3, 4 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (dom 𝐵 × ran 𝐴) ∈ V) |
6 | ssexg 5328 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 × cxp 5686 dom cdm 5688 ran crn 5689 ∘ ccom 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 |
This theorem is referenced by: coex 7952 coexd 7953 suppco 8229 fsuppco2 9440 fsuppcor 9441 mapfienlem2 9443 wemapwe 9734 cofsmo 10306 relexpsucnnr 15060 supcvg 15888 imasle 17569 setcco 18136 estrcco 18184 pwsco1mhm 18857 pwsco2mhm 18858 efmndov 18906 efmndcl 18907 symgov 19415 symgcl 19416 gsumval3lem2 19938 gsumzf1o 19944 f1lindf 21859 evls1sca 22342 tngds 24683 tngdsOLD 24684 climcncf 24939 motplusg 28564 tocycfv 33111 smatfval 33755 eulerpartlemmf 34356 hgt750lemg 34647 cossex 38400 tgrpov 40730 erngmul 40788 erngmul-rN 40796 dvamulr 40994 dvavadd 40997 dvhmulr 41068 mendmulr 43172 relexp0a 43705 choicefi 45142 climexp 45560 dvsinax 45868 stoweidlem27 45982 stoweidlem31 45986 stoweidlem59 46014 grimco 47817 uspgrbisymrelALT 47998 rngccoALTV 48114 ringccoALTV 48148 itcoval1 48512 itcoval2 48513 itcoval3 48514 itcovalsucov 48517 |
Copyright terms: Public domain | W3C validator |