Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coexg | Structured version Visualization version GIF version |
Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
coexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossxp 6175 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | |
2 | dmexg 7750 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom 𝐵 ∈ V) | |
3 | rnexg 7751 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
4 | xpexg 7600 | . . 3 ⊢ ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V) | |
5 | 2, 3, 4 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (dom 𝐵 × ran 𝐴) ∈ V) |
6 | ssexg 5247 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 × cxp 5587 dom cdm 5589 ran crn 5590 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 |
This theorem is referenced by: coex 7777 suppco 8022 fsuppco2 9162 fsuppcor 9163 mapfienlem2 9165 wemapwe 9455 cofsmo 10025 relexpsucnnr 14736 supcvg 15568 imasle 17234 setcco 17798 estrcco 17846 pwsco1mhm 18470 pwsco2mhm 18471 efmndov 18520 efmndcl 18521 symgov 18991 symgcl 18992 gsumval3lem2 19507 gsumzf1o 19513 f1lindf 21029 evls1sca 21489 tngds 23811 tngdsOLD 23812 climcncf 24063 motplusg 26903 tocycfv 31376 smatfval 31745 eulerpartlemmf 32342 hgt750lemg 32634 cossex 36542 tgrpov 38762 erngmul 38820 erngmul-rN 38828 dvamulr 39026 dvavadd 39029 dvhmulr 39100 mendmulr 41013 relexp0a 41324 choicefi 42740 climexp 43146 dvsinax 43454 stoweidlem27 43568 stoweidlem31 43572 stoweidlem59 43600 uspgrbisymrelALT 45317 rngccoALTV 45546 ringccoALTV 45609 itcoval1 46009 itcoval2 46010 itcoval3 46011 itcovalsucov 46014 |
Copyright terms: Public domain | W3C validator |