| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coexg | Structured version Visualization version GIF version | ||
| Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| coexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossxp 6248 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | |
| 2 | dmexg 7880 | . . 3 ⊢ (𝐵 ∈ 𝑊 → dom 𝐵 ∈ V) | |
| 3 | rnexg 7881 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 4 | xpexg 7729 | . . 3 ⊢ ((dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐵 × ran 𝐴) ∈ V) | |
| 5 | 2, 3, 4 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (dom 𝐵 × ran 𝐴) ∈ V) |
| 6 | ssexg 5281 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) ∧ (dom 𝐵 × ran 𝐴) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 × cxp 5639 dom cdm 5641 ran crn 5642 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: coex 7909 coexd 7910 suppco 8188 fsuppco2 9361 fsuppcor 9362 mapfienlem2 9364 wemapwe 9657 cofsmo 10229 relexpsucnnr 14998 supcvg 15829 imasle 17493 setcco 18052 estrcco 18098 pwsco1mhm 18766 pwsco2mhm 18767 efmndov 18815 efmndcl 18816 symgov 19321 symgcl 19322 gsumval3lem2 19843 gsumzf1o 19849 f1lindf 21738 evls1sca 22217 tngds 24543 climcncf 24800 motplusg 28476 tocycfv 33073 smatfval 33792 eulerpartlemmf 34373 hgt750lemg 34652 cossex 38417 tgrpov 40749 erngmul 40807 erngmul-rN 40815 dvamulr 41013 dvavadd 41016 dvhmulr 41087 mendmulr 43180 relexp0a 43712 choicefi 45201 climexp 45610 dvsinax 45918 stoweidlem27 46032 stoweidlem31 46036 stoweidlem59 46064 grimco 47893 uspgrbisymrelALT 48147 rngccoALTV 48263 ringccoALTV 48297 itcoval1 48656 itcoval2 48657 itcoval3 48658 itcovalsucov 48661 |
| Copyright terms: Public domain | W3C validator |