MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fineqv Structured version   Visualization version   GIF version

Theorem fineqv 9326
Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.)
Assertion
Ref Expression
fineqv (¬ ω ∈ V ↔ Fin = V)

Proof of Theorem fineqv
StepHypRef Expression
1 ssv 4033 . . . 4 Fin ⊆ V
21a1i 11 . . 3 (¬ ω ∈ V → Fin ⊆ V)
3 vex 3492 . . . . . . . 8 𝑎 ∈ V
4 fineqvlem 9325 . . . . . . . 8 ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ≼ 𝒫 𝒫 𝑎)
53, 4mpan 689 . . . . . . 7 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎)
6 reldom 9009 . . . . . . . 8 Rel ≼
76brrelex1i 5756 . . . . . . 7 (ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V)
85, 7syl 17 . . . . . 6 𝑎 ∈ Fin → ω ∈ V)
98con1i 147 . . . . 5 (¬ ω ∈ V → 𝑎 ∈ Fin)
109a1d 25 . . . 4 (¬ ω ∈ V → (𝑎 ∈ V → 𝑎 ∈ Fin))
1110ssrdv 4014 . . 3 (¬ ω ∈ V → V ⊆ Fin)
122, 11eqssd 4026 . 2 (¬ ω ∈ V → Fin = V)
13 ominf 9321 . . 3 ¬ ω ∈ Fin
14 eleq2 2833 . . 3 (Fin = V → (ω ∈ Fin ↔ ω ∈ V))
1513, 14mtbii 326 . 2 (Fin = V → ¬ ω ∈ V)
1612, 15impbii 209 1 (¬ ω ∈ V ↔ Fin = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  𝒫 cpw 4622   class class class wbr 5166  ωcom 7903  cdom 9001  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by:  npomex  11065  finorwe  37348
  Copyright terms: Public domain W3C validator