MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fineqv Structured version   Visualization version   GIF version

Theorem fineqv 9038
Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.)
Assertion
Ref Expression
fineqv (¬ ω ∈ V ↔ Fin = V)

Proof of Theorem fineqv
StepHypRef Expression
1 ssv 3945 . . . 4 Fin ⊆ V
21a1i 11 . . 3 (¬ ω ∈ V → Fin ⊆ V)
3 vex 3436 . . . . . . . 8 𝑎 ∈ V
4 fineqvlem 9037 . . . . . . . 8 ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ≼ 𝒫 𝒫 𝑎)
53, 4mpan 687 . . . . . . 7 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎)
6 reldom 8739 . . . . . . . 8 Rel ≼
76brrelex1i 5643 . . . . . . 7 (ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V)
85, 7syl 17 . . . . . 6 𝑎 ∈ Fin → ω ∈ V)
98con1i 147 . . . . 5 (¬ ω ∈ V → 𝑎 ∈ Fin)
109a1d 25 . . . 4 (¬ ω ∈ V → (𝑎 ∈ V → 𝑎 ∈ Fin))
1110ssrdv 3927 . . 3 (¬ ω ∈ V → V ⊆ Fin)
122, 11eqssd 3938 . 2 (¬ ω ∈ V → Fin = V)
13 ominf 9035 . . 3 ¬ ω ∈ Fin
14 eleq2 2827 . . 3 (Fin = V → (ω ∈ Fin ↔ ω ∈ V))
1513, 14mtbii 326 . 2 (Fin = V → ¬ ω ∈ V)
1612, 15impbii 208 1 (¬ ω ∈ V ↔ Fin = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  𝒫 cpw 4533   class class class wbr 5074  ωcom 7712  cdom 8731  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by:  npomex  10752  finorwe  35553
  Copyright terms: Public domain W3C validator