| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fineqv | Structured version Visualization version GIF version | ||
| Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| fineqv | ⊢ (¬ ω ∈ V ↔ Fin = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3974 | . . . 4 ⊢ Fin ⊆ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (¬ ω ∈ V → Fin ⊆ V) |
| 3 | vex 3454 | . . . . . . . 8 ⊢ 𝑎 ∈ V | |
| 4 | fineqvlem 9216 | . . . . . . . 8 ⊢ ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ≼ 𝒫 𝒫 𝑎) | |
| 5 | 3, 4 | mpan 690 | . . . . . . 7 ⊢ (¬ 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎) |
| 6 | reldom 8927 | . . . . . . . 8 ⊢ Rel ≼ | |
| 7 | 6 | brrelex1i 5697 | . . . . . . 7 ⊢ (ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V) |
| 8 | 5, 7 | syl 17 | . . . . . 6 ⊢ (¬ 𝑎 ∈ Fin → ω ∈ V) |
| 9 | 8 | con1i 147 | . . . . 5 ⊢ (¬ ω ∈ V → 𝑎 ∈ Fin) |
| 10 | 9 | a1d 25 | . . . 4 ⊢ (¬ ω ∈ V → (𝑎 ∈ V → 𝑎 ∈ Fin)) |
| 11 | 10 | ssrdv 3955 | . . 3 ⊢ (¬ ω ∈ V → V ⊆ Fin) |
| 12 | 2, 11 | eqssd 3967 | . 2 ⊢ (¬ ω ∈ V → Fin = V) |
| 13 | ominf 9212 | . . 3 ⊢ ¬ ω ∈ Fin | |
| 14 | eleq2 2818 | . . 3 ⊢ (Fin = V → (ω ∈ Fin ↔ ω ∈ V)) | |
| 15 | 13, 14 | mtbii 326 | . 2 ⊢ (Fin = V → ¬ ω ∈ V) |
| 16 | 12, 15 | impbii 209 | 1 ⊢ (¬ ω ∈ V ↔ Fin = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 class class class wbr 5110 ωcom 7845 ≼ cdom 8919 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 |
| This theorem is referenced by: npomex 10956 finorwe 37377 |
| Copyright terms: Public domain | W3C validator |