![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fineqv | Structured version Visualization version GIF version |
Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.) |
Ref | Expression |
---|---|
fineqv | ⊢ (¬ ω ∈ V ↔ Fin = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4033 | . . . 4 ⊢ Fin ⊆ V | |
2 | 1 | a1i 11 | . . 3 ⊢ (¬ ω ∈ V → Fin ⊆ V) |
3 | vex 3492 | . . . . . . . 8 ⊢ 𝑎 ∈ V | |
4 | fineqvlem 9325 | . . . . . . . 8 ⊢ ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ≼ 𝒫 𝒫 𝑎) | |
5 | 3, 4 | mpan 689 | . . . . . . 7 ⊢ (¬ 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎) |
6 | reldom 9009 | . . . . . . . 8 ⊢ Rel ≼ | |
7 | 6 | brrelex1i 5756 | . . . . . . 7 ⊢ (ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V) |
8 | 5, 7 | syl 17 | . . . . . 6 ⊢ (¬ 𝑎 ∈ Fin → ω ∈ V) |
9 | 8 | con1i 147 | . . . . 5 ⊢ (¬ ω ∈ V → 𝑎 ∈ Fin) |
10 | 9 | a1d 25 | . . . 4 ⊢ (¬ ω ∈ V → (𝑎 ∈ V → 𝑎 ∈ Fin)) |
11 | 10 | ssrdv 4014 | . . 3 ⊢ (¬ ω ∈ V → V ⊆ Fin) |
12 | 2, 11 | eqssd 4026 | . 2 ⊢ (¬ ω ∈ V → Fin = V) |
13 | ominf 9321 | . . 3 ⊢ ¬ ω ∈ Fin | |
14 | eleq2 2833 | . . 3 ⊢ (Fin = V → (ω ∈ Fin ↔ ω ∈ V)) | |
15 | 13, 14 | mtbii 326 | . 2 ⊢ (Fin = V → ¬ ω ∈ V) |
16 | 12, 15 | impbii 209 | 1 ⊢ (¬ ω ∈ V ↔ Fin = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 ωcom 7903 ≼ cdom 9001 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 |
This theorem is referenced by: npomex 11065 finorwe 37348 |
Copyright terms: Public domain | W3C validator |