| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fineqv | Structured version Visualization version GIF version | ||
| Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| fineqv | ⊢ (¬ ω ∈ V ↔ Fin = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3983 | . . . 4 ⊢ Fin ⊆ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (¬ ω ∈ V → Fin ⊆ V) |
| 3 | vex 3463 | . . . . . . . 8 ⊢ 𝑎 ∈ V | |
| 4 | fineqvlem 9268 | . . . . . . . 8 ⊢ ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ≼ 𝒫 𝒫 𝑎) | |
| 5 | 3, 4 | mpan 690 | . . . . . . 7 ⊢ (¬ 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎) |
| 6 | reldom 8963 | . . . . . . . 8 ⊢ Rel ≼ | |
| 7 | 6 | brrelex1i 5710 | . . . . . . 7 ⊢ (ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V) |
| 8 | 5, 7 | syl 17 | . . . . . 6 ⊢ (¬ 𝑎 ∈ Fin → ω ∈ V) |
| 9 | 8 | con1i 147 | . . . . 5 ⊢ (¬ ω ∈ V → 𝑎 ∈ Fin) |
| 10 | 9 | a1d 25 | . . . 4 ⊢ (¬ ω ∈ V → (𝑎 ∈ V → 𝑎 ∈ Fin)) |
| 11 | 10 | ssrdv 3964 | . . 3 ⊢ (¬ ω ∈ V → V ⊆ Fin) |
| 12 | 2, 11 | eqssd 3976 | . 2 ⊢ (¬ ω ∈ V → Fin = V) |
| 13 | ominf 9264 | . . 3 ⊢ ¬ ω ∈ Fin | |
| 14 | eleq2 2823 | . . 3 ⊢ (Fin = V → (ω ∈ Fin ↔ ω ∈ V)) | |
| 15 | 13, 14 | mtbii 326 | . 2 ⊢ (Fin = V → ¬ ω ∈ V) |
| 16 | 12, 15 | impbii 209 | 1 ⊢ (¬ ω ∈ V ↔ Fin = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 class class class wbr 5119 ωcom 7859 ≼ cdom 8955 Fincfn 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-om 7860 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 |
| This theorem is referenced by: npomex 11008 finorwe 37346 |
| Copyright terms: Public domain | W3C validator |