| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fineqv | Structured version Visualization version GIF version | ||
| Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| fineqv | ⊢ (¬ ω ∈ V ↔ Fin = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3968 | . . . 4 ⊢ Fin ⊆ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (¬ ω ∈ V → Fin ⊆ V) |
| 3 | vex 3448 | . . . . . . . 8 ⊢ 𝑎 ∈ V | |
| 4 | fineqvlem 9185 | . . . . . . . 8 ⊢ ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ≼ 𝒫 𝒫 𝑎) | |
| 5 | 3, 4 | mpan 690 | . . . . . . 7 ⊢ (¬ 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎) |
| 6 | reldom 8901 | . . . . . . . 8 ⊢ Rel ≼ | |
| 7 | 6 | brrelex1i 5687 | . . . . . . 7 ⊢ (ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V) |
| 8 | 5, 7 | syl 17 | . . . . . 6 ⊢ (¬ 𝑎 ∈ Fin → ω ∈ V) |
| 9 | 8 | con1i 147 | . . . . 5 ⊢ (¬ ω ∈ V → 𝑎 ∈ Fin) |
| 10 | 9 | a1d 25 | . . . 4 ⊢ (¬ ω ∈ V → (𝑎 ∈ V → 𝑎 ∈ Fin)) |
| 11 | 10 | ssrdv 3949 | . . 3 ⊢ (¬ ω ∈ V → V ⊆ Fin) |
| 12 | 2, 11 | eqssd 3961 | . 2 ⊢ (¬ ω ∈ V → Fin = V) |
| 13 | ominf 9181 | . . 3 ⊢ ¬ ω ∈ Fin | |
| 14 | eleq2 2817 | . . 3 ⊢ (Fin = V → (ω ∈ Fin ↔ ω ∈ V)) | |
| 15 | 13, 14 | mtbii 326 | . 2 ⊢ (Fin = V → ¬ ω ∈ V) |
| 16 | 12, 15 | impbii 209 | 1 ⊢ (¬ ω ∈ V ↔ Fin = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 class class class wbr 5102 ωcom 7822 ≼ cdom 8893 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 |
| This theorem is referenced by: npomex 10925 finorwe 37363 |
| Copyright terms: Public domain | W3C validator |