![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fineqv | Structured version Visualization version GIF version |
Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.) |
Ref | Expression |
---|---|
fineqv | ⊢ (¬ ω ∈ V ↔ Fin = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4005 | . . . 4 ⊢ Fin ⊆ V | |
2 | 1 | a1i 11 | . . 3 ⊢ (¬ ω ∈ V → Fin ⊆ V) |
3 | vex 3478 | . . . . . . . 8 ⊢ 𝑎 ∈ V | |
4 | fineqvlem 9258 | . . . . . . . 8 ⊢ ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ≼ 𝒫 𝒫 𝑎) | |
5 | 3, 4 | mpan 688 | . . . . . . 7 ⊢ (¬ 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎) |
6 | reldom 8941 | . . . . . . . 8 ⊢ Rel ≼ | |
7 | 6 | brrelex1i 5730 | . . . . . . 7 ⊢ (ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V) |
8 | 5, 7 | syl 17 | . . . . . 6 ⊢ (¬ 𝑎 ∈ Fin → ω ∈ V) |
9 | 8 | con1i 147 | . . . . 5 ⊢ (¬ ω ∈ V → 𝑎 ∈ Fin) |
10 | 9 | a1d 25 | . . . 4 ⊢ (¬ ω ∈ V → (𝑎 ∈ V → 𝑎 ∈ Fin)) |
11 | 10 | ssrdv 3987 | . . 3 ⊢ (¬ ω ∈ V → V ⊆ Fin) |
12 | 2, 11 | eqssd 3998 | . 2 ⊢ (¬ ω ∈ V → Fin = V) |
13 | ominf 9254 | . . 3 ⊢ ¬ ω ∈ Fin | |
14 | eleq2 2822 | . . 3 ⊢ (Fin = V → (ω ∈ Fin ↔ ω ∈ V)) | |
15 | 13, 14 | mtbii 325 | . 2 ⊢ (Fin = V → ¬ ω ∈ V) |
16 | 12, 15 | impbii 208 | 1 ⊢ (¬ ω ∈ V ↔ Fin = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 𝒫 cpw 4601 class class class wbr 5147 ωcom 7851 ≼ cdom 8933 Fincfn 8935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 |
This theorem is referenced by: npomex 10987 finorwe 36251 |
Copyright terms: Public domain | W3C validator |