MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fineqv Structured version   Visualization version   GIF version

Theorem fineqv 8411
Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.)
Assertion
Ref Expression
fineqv (¬ ω ∈ V ↔ Fin = V)

Proof of Theorem fineqv
StepHypRef Expression
1 ssv 3819 . . . 4 Fin ⊆ V
21a1i 11 . . 3 (¬ ω ∈ V → Fin ⊆ V)
3 vex 3393 . . . . . . . 8 𝑎 ∈ V
4 fineqvlem 8410 . . . . . . . 8 ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ≼ 𝒫 𝒫 𝑎)
53, 4mpan 673 . . . . . . 7 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎)
6 reldom 8195 . . . . . . . 8 Rel ≼
76brrelexi 5355 . . . . . . 7 (ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V)
85, 7syl 17 . . . . . 6 𝑎 ∈ Fin → ω ∈ V)
98con1i 146 . . . . 5 (¬ ω ∈ V → 𝑎 ∈ Fin)
109a1d 25 . . . 4 (¬ ω ∈ V → (𝑎 ∈ V → 𝑎 ∈ Fin))
1110ssrdv 3801 . . 3 (¬ ω ∈ V → V ⊆ Fin)
122, 11eqssd 3812 . 2 (¬ ω ∈ V → Fin = V)
13 ominf 8408 . . 3 ¬ ω ∈ Fin
14 eleq2 2873 . . 3 (Fin = V → (ω ∈ Fin ↔ ω ∈ V))
1513, 14mtbii 317 . 2 (Fin = V → ¬ ω ∈ V)
1612, 15impbii 200 1 (¬ ω ∈ V ↔ Fin = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 197   = wceq 1637  wcel 2158  Vcvv 3390  wss 3766  𝒫 cpw 4348   class class class wbr 4840  ωcom 7292  cdom 8187  Fincfn 8189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-ral 3100  df-rex 3101  df-reu 3102  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-iun 4710  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-om 7293  df-er 7976  df-en 8190  df-dom 8191  df-sdom 8192  df-fin 8193
This theorem is referenced by:  npomex  10100
  Copyright terms: Public domain W3C validator