MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fineqv Structured version   Visualization version   GIF version

Theorem fineqv 9262
Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.)
Assertion
Ref Expression
fineqv (¬ ω ∈ V ↔ Fin = V)

Proof of Theorem fineqv
StepHypRef Expression
1 ssv 4001 . . . 4 Fin ⊆ V
21a1i 11 . . 3 (¬ ω ∈ V → Fin ⊆ V)
3 vex 3472 . . . . . . . 8 𝑎 ∈ V
4 fineqvlem 9261 . . . . . . . 8 ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ≼ 𝒫 𝒫 𝑎)
53, 4mpan 687 . . . . . . 7 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎)
6 reldom 8944 . . . . . . . 8 Rel ≼
76brrelex1i 5725 . . . . . . 7 (ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V)
85, 7syl 17 . . . . . 6 𝑎 ∈ Fin → ω ∈ V)
98con1i 147 . . . . 5 (¬ ω ∈ V → 𝑎 ∈ Fin)
109a1d 25 . . . 4 (¬ ω ∈ V → (𝑎 ∈ V → 𝑎 ∈ Fin))
1110ssrdv 3983 . . 3 (¬ ω ∈ V → V ⊆ Fin)
122, 11eqssd 3994 . 2 (¬ ω ∈ V → Fin = V)
13 ominf 9257 . . 3 ¬ ω ∈ Fin
14 eleq2 2816 . . 3 (Fin = V → (ω ∈ Fin ↔ ω ∈ V))
1513, 14mtbii 326 . 2 (Fin = V → ¬ ω ∈ V)
1612, 15impbii 208 1 (¬ ω ∈ V ↔ Fin = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1533  wcel 2098  Vcvv 3468  wss 3943  𝒫 cpw 4597   class class class wbr 5141  ωcom 7851  cdom 8936  Fincfn 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7852  df-1o 8464  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942
This theorem is referenced by:  npomex  10990  finorwe  36770
  Copyright terms: Public domain W3C validator