MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpprc Structured version   Visualization version   GIF version

Theorem ixpprc 8853
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpprc 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ixpprc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 neq0 4305 . . 3 X𝑥𝐴 𝐵 = ∅ ↔ ∃𝑓 𝑓X𝑥𝐴 𝐵)
2 ixpfn 8837 . . . . 5 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
3 fndm 6589 . . . . . 6 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
4 vex 3442 . . . . . . 7 𝑓 ∈ V
54dmex 7849 . . . . . 6 dom 𝑓 ∈ V
63, 5eqeltrrdi 2837 . . . . 5 (𝑓 Fn 𝐴𝐴 ∈ V)
72, 6syl 17 . . . 4 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
87exlimiv 1930 . . 3 (∃𝑓 𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
91, 8sylbi 217 . 2 X𝑥𝐴 𝐵 = ∅ → 𝐴 ∈ V)
109con1i 147 1 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438  c0 4286  dom cdm 5623   Fn wfn 6481  Xcixp 8831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-ixp 8832
This theorem is referenced by:  ixpexg  8856  ixpssmap2g  8861  ixpssmapg  8862  resixpfo  8870
  Copyright terms: Public domain W3C validator