MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpprc Structured version   Visualization version   GIF version

Theorem ixpprc 8977
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpprc 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ixpprc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 neq0 4375 . . 3 X𝑥𝐴 𝐵 = ∅ ↔ ∃𝑓 𝑓X𝑥𝐴 𝐵)
2 ixpfn 8961 . . . . 5 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
3 fndm 6682 . . . . . 6 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
4 vex 3492 . . . . . . 7 𝑓 ∈ V
54dmex 7949 . . . . . 6 dom 𝑓 ∈ V
63, 5eqeltrrdi 2853 . . . . 5 (𝑓 Fn 𝐴𝐴 ∈ V)
72, 6syl 17 . . . 4 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
87exlimiv 1929 . . 3 (∃𝑓 𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
91, 8sylbi 217 . 2 X𝑥𝐴 𝐵 = ∅ → 𝐴 ∈ V)
109con1i 147 1 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  c0 4352  dom cdm 5700   Fn wfn 6568  Xcixp 8955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-ixp 8956
This theorem is referenced by:  ixpexg  8980  ixpssmap2g  8985  ixpssmapg  8986  resixpfo  8994
  Copyright terms: Public domain W3C validator