![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpprc | Structured version Visualization version GIF version |
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.) |
Ref | Expression |
---|---|
ixpprc | ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 4375 | . . 3 ⊢ (¬ X𝑥 ∈ 𝐴 𝐵 = ∅ ↔ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) | |
2 | ixpfn 8961 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 Fn 𝐴) | |
3 | fndm 6682 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
4 | vex 3492 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
5 | 4 | dmex 7949 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
6 | 3, 5 | eqeltrrdi 2853 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
8 | 7 | exlimiv 1929 | . . 3 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
9 | 1, 8 | sylbi 217 | . 2 ⊢ (¬ X𝑥 ∈ 𝐴 𝐵 = ∅ → 𝐴 ∈ V) |
10 | 9 | con1i 147 | 1 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 dom cdm 5700 Fn wfn 6568 Xcixp 8955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-ixp 8956 |
This theorem is referenced by: ixpexg 8980 ixpssmap2g 8985 ixpssmapg 8986 resixpfo 8994 |
Copyright terms: Public domain | W3C validator |