| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unbndrank | Structured version Visualization version GIF version | ||
| Description: The elements of a proper class have unbounded rank. Exercise 2 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.) |
| Ref | Expression |
|---|---|
| unbndrank | ⊢ (¬ 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon 9748 | . . . . . . . 8 ⊢ (rank‘𝑦) ∈ On | |
| 2 | ontri1 6366 | . . . . . . . 8 ⊢ (((rank‘𝑦) ∈ On ∧ 𝑥 ∈ On) → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦))) | |
| 3 | 1, 2 | mpan 690 | . . . . . . 7 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦))) |
| 4 | 3 | ralbidv 3156 | . . . . . 6 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ (rank‘𝑦))) |
| 5 | ralnex 3055 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) | |
| 6 | 4, 5 | bitrdi 287 | . . . . 5 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦))) |
| 7 | 6 | rexbiia 3074 | . . . 4 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∃𝑥 ∈ On ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
| 8 | rexnal 3082 | . . . 4 ⊢ (∃𝑥 ∈ On ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) | |
| 9 | 7, 8 | bitri 275 | . . 3 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
| 10 | bndrank 9794 | . . 3 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) | |
| 11 | 9, 10 | sylbir 235 | . 2 ⊢ (¬ ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦) → 𝐴 ∈ V) |
| 12 | 11 | con1i 147 | 1 ⊢ (¬ 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 Oncon0 6332 ‘cfv 6511 rankcrnk 9716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |