![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unbndrank | Structured version Visualization version GIF version |
Description: The elements of a proper class have unbounded rank. Exercise 2 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.) |
Ref | Expression |
---|---|
unbndrank | ⊢ (¬ 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankon 9010 | . . . . . . . 8 ⊢ (rank‘𝑦) ∈ On | |
2 | ontri1 6057 | . . . . . . . 8 ⊢ (((rank‘𝑦) ∈ On ∧ 𝑥 ∈ On) → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦))) | |
3 | 1, 2 | mpan 677 | . . . . . . 7 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦))) |
4 | 3 | ralbidv 3141 | . . . . . 6 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ (rank‘𝑦))) |
5 | ralnex 3177 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) | |
6 | 4, 5 | syl6bb 279 | . . . . 5 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦))) |
7 | 6 | rexbiia 3187 | . . . 4 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∃𝑥 ∈ On ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
8 | rexnal 3179 | . . . 4 ⊢ (∃𝑥 ∈ On ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) | |
9 | 7, 8 | bitri 267 | . . 3 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
10 | bndrank 9056 | . . 3 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) | |
11 | 9, 10 | sylbir 227 | . 2 ⊢ (¬ ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦) → 𝐴 ∈ V) |
12 | 11 | con1i 147 | 1 ⊢ (¬ 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∈ wcel 2048 ∀wral 3082 ∃wrex 3083 Vcvv 3409 ⊆ wss 3825 Oncon0 6023 ‘cfv 6182 rankcrnk 8978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-reg 8843 ax-inf2 8890 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-om 7391 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-r1 8979 df-rank 8980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |