MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbndrank Structured version   Visualization version   GIF version

Theorem unbndrank 9531
Description: The elements of a proper class have unbounded rank. Exercise 2 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
unbndrank 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem unbndrank
StepHypRef Expression
1 rankon 9484 . . . . . . . 8 (rank‘𝑦) ∈ On
2 ontri1 6285 . . . . . . . 8 (((rank‘𝑦) ∈ On ∧ 𝑥 ∈ On) → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦)))
31, 2mpan 686 . . . . . . 7 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦)))
43ralbidv 3120 . . . . . 6 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥 ∈ (rank‘𝑦)))
5 ralnex 3163 . . . . . 6 (∀𝑦𝐴 ¬ 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
64, 5bitrdi 286 . . . . 5 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦)))
76rexbiia 3176 . . . 4 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∃𝑥 ∈ On ¬ ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
8 rexnal 3165 . . . 4 (∃𝑥 ∈ On ¬ ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
97, 8bitri 274 . . 3 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
10 bndrank 9530 . . 3 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V)
119, 10sylbir 234 . 2 (¬ ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦) → 𝐴 ∈ V)
1211con1i 147 1 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883  Oncon0 6251  cfv 6418  rankcrnk 9452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-rank 9454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator