MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbndrank Structured version   Visualization version   GIF version

Theorem unbndrank 9600
Description: The elements of a proper class have unbounded rank. Exercise 2 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
unbndrank 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem unbndrank
StepHypRef Expression
1 rankon 9553 . . . . . . . 8 (rank‘𝑦) ∈ On
2 ontri1 6300 . . . . . . . 8 (((rank‘𝑦) ∈ On ∧ 𝑥 ∈ On) → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦)))
31, 2mpan 687 . . . . . . 7 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦)))
43ralbidv 3112 . . . . . 6 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥 ∈ (rank‘𝑦)))
5 ralnex 3167 . . . . . 6 (∀𝑦𝐴 ¬ 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
64, 5bitrdi 287 . . . . 5 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦)))
76rexbiia 3180 . . . 4 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∃𝑥 ∈ On ¬ ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
8 rexnal 3169 . . . 4 (∃𝑥 ∈ On ¬ ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
97, 8bitri 274 . . 3 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
10 bndrank 9599 . . 3 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V)
119, 10sylbir 234 . 2 (¬ ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦) → 𝐴 ∈ V)
1211con1i 147 1 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  Oncon0 6266  cfv 6433  rankcrnk 9521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522  df-rank 9523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator