MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbndrank Structured version   Visualization version   GIF version

Theorem unbndrank 9057
Description: The elements of a proper class have unbounded rank. Exercise 2 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
unbndrank 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem unbndrank
StepHypRef Expression
1 rankon 9010 . . . . . . . 8 (rank‘𝑦) ∈ On
2 ontri1 6057 . . . . . . . 8 (((rank‘𝑦) ∈ On ∧ 𝑥 ∈ On) → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦)))
31, 2mpan 677 . . . . . . 7 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦)))
43ralbidv 3141 . . . . . 6 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥 ∈ (rank‘𝑦)))
5 ralnex 3177 . . . . . 6 (∀𝑦𝐴 ¬ 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
64, 5syl6bb 279 . . . . 5 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦)))
76rexbiia 3187 . . . 4 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∃𝑥 ∈ On ¬ ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
8 rexnal 3179 . . . 4 (∃𝑥 ∈ On ¬ ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
97, 8bitri 267 . . 3 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
10 bndrank 9056 . . 3 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V)
119, 10sylbir 227 . 2 (¬ ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦) → 𝐴 ∈ V)
1211con1i 147 1 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦𝐴 𝑥 ∈ (rank‘𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wcel 2048  wral 3082  wrex 3083  Vcvv 3409  wss 3825  Oncon0 6023  cfv 6182  rankcrnk 8978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-reg 8843  ax-inf2 8890
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-om 7391  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-r1 8979  df-rank 8980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator