Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unbndrank | Structured version Visualization version GIF version |
Description: The elements of a proper class have unbounded rank. Exercise 2 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.) |
Ref | Expression |
---|---|
unbndrank | ⊢ (¬ 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankon 9631 | . . . . . . . 8 ⊢ (rank‘𝑦) ∈ On | |
2 | ontri1 6323 | . . . . . . . 8 ⊢ (((rank‘𝑦) ∈ On ∧ 𝑥 ∈ On) → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦))) | |
3 | 1, 2 | mpan 687 | . . . . . . 7 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦))) |
4 | 3 | ralbidv 3171 | . . . . . 6 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ (rank‘𝑦))) |
5 | ralnex 3073 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) | |
6 | 4, 5 | bitrdi 286 | . . . . 5 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦))) |
7 | 6 | rexbiia 3092 | . . . 4 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∃𝑥 ∈ On ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
8 | rexnal 3100 | . . . 4 ⊢ (∃𝑥 ∈ On ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) | |
9 | 7, 8 | bitri 274 | . . 3 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
10 | bndrank 9677 | . . 3 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) | |
11 | 9, 10 | sylbir 234 | . 2 ⊢ (¬ ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦) → 𝐴 ∈ V) |
12 | 11 | con1i 147 | 1 ⊢ (¬ 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2105 ∀wral 3062 ∃wrex 3071 Vcvv 3441 ⊆ wss 3897 Oncon0 6289 ‘cfv 6466 rankcrnk 9599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-reg 9428 ax-inf2 9477 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-ov 7320 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-r1 9600 df-rank 9601 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |