| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unbndrank | Structured version Visualization version GIF version | ||
| Description: The elements of a proper class have unbounded rank. Exercise 2 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.) |
| Ref | Expression |
|---|---|
| unbndrank | ⊢ (¬ 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon 9688 | . . . . . . . 8 ⊢ (rank‘𝑦) ∈ On | |
| 2 | ontri1 6340 | . . . . . . . 8 ⊢ (((rank‘𝑦) ∈ On ∧ 𝑥 ∈ On) → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦))) | |
| 3 | 1, 2 | mpan 690 | . . . . . . 7 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝑦))) |
| 4 | 3 | ralbidv 3155 | . . . . . 6 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ (rank‘𝑦))) |
| 5 | ralnex 3058 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) | |
| 6 | 4, 5 | bitrdi 287 | . . . . 5 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦))) |
| 7 | 6 | rexbiia 3077 | . . . 4 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ∃𝑥 ∈ On ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
| 8 | rexnal 3084 | . . . 4 ⊢ (∃𝑥 ∈ On ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦) ↔ ¬ ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) | |
| 9 | 7, 8 | bitri 275 | . . 3 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 ↔ ¬ ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
| 10 | bndrank 9734 | . . 3 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) | |
| 11 | 9, 10 | sylbir 235 | . 2 ⊢ (¬ ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦) → 𝐴 ∈ V) |
| 12 | 11 | con1i 147 | 1 ⊢ (¬ 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 Oncon0 6306 ‘cfv 6481 rankcrnk 9656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |