| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoxneldm | Structured version Visualization version GIF version | ||
| Description: If the first argument of an operation given by a maps-to rule is not an element of the first component of the domain or the second argument is not an element of the second component of the domain depending on the first argument, then the value of the operation is the empty set. (Contributed by AV, 25-Oct-2020.) |
| Ref | Expression |
|---|---|
| mpoxeldm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| Ref | Expression |
|---|---|
| mpoxneldm | ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3030 | . . . 4 ⊢ (𝑋 ∉ 𝐶 ↔ ¬ 𝑋 ∈ 𝐶) | |
| 2 | df-nel 3030 | . . . 4 ⊢ (𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷 ↔ ¬ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷) | |
| 3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) ↔ (¬ 𝑋 ∈ 𝐶 ∨ ¬ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| 4 | ianor 983 | . . 3 ⊢ (¬ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷) ↔ (¬ 𝑋 ∈ 𝐶 ∨ ¬ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) | |
| 5 | 3, 4 | bitr4i 278 | . 2 ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) ↔ ¬ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| 6 | neq0 4311 | . . . 4 ⊢ (¬ (𝑋𝐹𝑌) = ∅ ↔ ∃𝑛 𝑛 ∈ (𝑋𝐹𝑌)) | |
| 7 | mpoxeldm.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 8 | 7 | mpoxeldm 8167 | . . . . 5 ⊢ (𝑛 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| 9 | 8 | exlimiv 1930 | . . . 4 ⊢ (∃𝑛 𝑛 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| 10 | 6, 9 | sylbi 217 | . . 3 ⊢ (¬ (𝑋𝐹𝑌) = ∅ → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| 11 | 10 | con1i 147 | . 2 ⊢ (¬ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) |
| 12 | 5, 11 | sylbi 217 | 1 ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∉ wnel 3029 ⦋csb 3859 ∅c0 4292 (class class class)co 7369 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 |
| This theorem is referenced by: nbgrnvtx0 29242 clnbgrnvtx0 47801 |
| Copyright terms: Public domain | W3C validator |