![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoxneldm | Structured version Visualization version GIF version |
Description: If the first argument of an operation given by a maps-to rule is not an element of the first component of the domain or the second argument is not an element of the second component of the domain depending on the first argument, then the value of the operation is the empty set. (Contributed by AV, 25-Oct-2020.) |
Ref | Expression |
---|---|
mpoxeldm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
Ref | Expression |
---|---|
mpoxneldm | ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3048 | . . . 4 ⊢ (𝑋 ∉ 𝐶 ↔ ¬ 𝑋 ∈ 𝐶) | |
2 | df-nel 3048 | . . . 4 ⊢ (𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷 ↔ ¬ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷) | |
3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) ↔ (¬ 𝑋 ∈ 𝐶 ∨ ¬ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
4 | ianor 981 | . . 3 ⊢ (¬ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷) ↔ (¬ 𝑋 ∈ 𝐶 ∨ ¬ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) | |
5 | 3, 4 | bitr4i 278 | . 2 ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) ↔ ¬ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
6 | neq0 4343 | . . . 4 ⊢ (¬ (𝑋𝐹𝑌) = ∅ ↔ ∃𝑛 𝑛 ∈ (𝑋𝐹𝑌)) | |
7 | mpoxeldm.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
8 | 7 | mpoxeldm 8190 | . . . . 5 ⊢ (𝑛 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
9 | 8 | exlimiv 1934 | . . . 4 ⊢ (∃𝑛 𝑛 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
10 | 6, 9 | sylbi 216 | . . 3 ⊢ (¬ (𝑋𝐹𝑌) = ∅ → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
11 | 10 | con1i 147 | . 2 ⊢ (¬ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) |
12 | 5, 11 | sylbi 216 | 1 ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 846 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∉ wnel 3047 ⦋csb 3891 ∅c0 4320 (class class class)co 7403 ∈ cmpo 7405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pr 5425 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6491 df-fun 6541 df-fv 6547 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7969 df-2nd 7970 |
This theorem is referenced by: nbgrnvtx0 28575 |
Copyright terms: Public domain | W3C validator |