| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoxneldm | Structured version Visualization version GIF version | ||
| Description: If the first argument of an operation given by a maps-to rule is not an element of the first component of the domain or the second argument is not an element of the second component of the domain depending on the first argument, then the value of the operation is the empty set. (Contributed by AV, 25-Oct-2020.) |
| Ref | Expression |
|---|---|
| mpoxeldm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| Ref | Expression |
|---|---|
| mpoxneldm | ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3030 | . . . 4 ⊢ (𝑋 ∉ 𝐶 ↔ ¬ 𝑋 ∈ 𝐶) | |
| 2 | df-nel 3030 | . . . 4 ⊢ (𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷 ↔ ¬ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷) | |
| 3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) ↔ (¬ 𝑋 ∈ 𝐶 ∨ ¬ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| 4 | ianor 983 | . . 3 ⊢ (¬ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷) ↔ (¬ 𝑋 ∈ 𝐶 ∨ ¬ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) | |
| 5 | 3, 4 | bitr4i 278 | . 2 ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) ↔ ¬ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| 6 | neq0 4315 | . . . 4 ⊢ (¬ (𝑋𝐹𝑌) = ∅ ↔ ∃𝑛 𝑛 ∈ (𝑋𝐹𝑌)) | |
| 7 | mpoxeldm.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 8 | 7 | mpoxeldm 8190 | . . . . 5 ⊢ (𝑛 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| 9 | 8 | exlimiv 1930 | . . . 4 ⊢ (∃𝑛 𝑛 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| 10 | 6, 9 | sylbi 217 | . . 3 ⊢ (¬ (𝑋𝐹𝑌) = ∅ → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
| 11 | 10 | con1i 147 | . 2 ⊢ (¬ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) |
| 12 | 5, 11 | sylbi 217 | 1 ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∉ wnel 3029 ⦋csb 3862 ∅c0 4296 (class class class)co 7387 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: nbgrnvtx0 29266 clnbgrnvtx0 47828 |
| Copyright terms: Public domain | W3C validator |