MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxneldm Structured version   Visualization version   GIF version

Theorem mpoxneldm 8253
Description: If the first argument of an operation given by a maps-to rule is not an element of the first component of the domain or the second argument is not an element of the second component of the domain depending on the first argument, then the value of the operation is the empty set. (Contributed by AV, 25-Oct-2020.)
Hypothesis
Ref Expression
mpoxeldm.f 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
mpoxneldm ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) → (𝑋𝐹𝑌) = ∅)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑦,𝐷   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐷(𝑥)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem mpoxneldm
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-nel 3053 . . . 4 (𝑋𝐶 ↔ ¬ 𝑋𝐶)
2 df-nel 3053 . . . 4 (𝑌𝑋 / 𝑥𝐷 ↔ ¬ 𝑌𝑋 / 𝑥𝐷)
31, 2orbi12i 913 . . 3 ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) ↔ (¬ 𝑋𝐶 ∨ ¬ 𝑌𝑋 / 𝑥𝐷))
4 ianor 982 . . 3 (¬ (𝑋𝐶𝑌𝑋 / 𝑥𝐷) ↔ (¬ 𝑋𝐶 ∨ ¬ 𝑌𝑋 / 𝑥𝐷))
53, 4bitr4i 278 . 2 ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) ↔ ¬ (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
6 neq0 4375 . . . 4 (¬ (𝑋𝐹𝑌) = ∅ ↔ ∃𝑛 𝑛 ∈ (𝑋𝐹𝑌))
7 mpoxeldm.f . . . . . 6 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
87mpoxeldm 8252 . . . . 5 (𝑛 ∈ (𝑋𝐹𝑌) → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
98exlimiv 1929 . . . 4 (∃𝑛 𝑛 ∈ (𝑋𝐹𝑌) → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
106, 9sylbi 217 . . 3 (¬ (𝑋𝐹𝑌) = ∅ → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
1110con1i 147 . 2 (¬ (𝑋𝐶𝑌𝑋 / 𝑥𝐷) → (𝑋𝐹𝑌) = ∅)
125, 11sylbi 217 1 ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) → (𝑋𝐹𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  wnel 3052  csb 3921  c0 4352  (class class class)co 7448  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031
This theorem is referenced by:  nbgrnvtx0  29374  clnbgrnvtx0  47700
  Copyright terms: Public domain W3C validator