![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoxneldm | Structured version Visualization version GIF version |
Description: If the first argument of an operation given by a maps-to rule is not an element of the first component of the domain or the second argument is not an element of the second component of the domain depending on the first argument, then the value of the operation is the empty set. (Contributed by AV, 25-Oct-2020.) |
Ref | Expression |
---|---|
mpoxeldm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
Ref | Expression |
---|---|
mpoxneldm | ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3044 | . . . 4 ⊢ (𝑋 ∉ 𝐶 ↔ ¬ 𝑋 ∈ 𝐶) | |
2 | df-nel 3044 | . . . 4 ⊢ (𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷 ↔ ¬ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷) | |
3 | 1, 2 | orbi12i 913 | . . 3 ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) ↔ (¬ 𝑋 ∈ 𝐶 ∨ ¬ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
4 | ianor 980 | . . 3 ⊢ (¬ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷) ↔ (¬ 𝑋 ∈ 𝐶 ∨ ¬ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) | |
5 | 3, 4 | bitr4i 278 | . 2 ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) ↔ ¬ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
6 | neq0 4346 | . . . 4 ⊢ (¬ (𝑋𝐹𝑌) = ∅ ↔ ∃𝑛 𝑛 ∈ (𝑋𝐹𝑌)) | |
7 | mpoxeldm.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
8 | 7 | mpoxeldm 8217 | . . . . 5 ⊢ (𝑛 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
9 | 8 | exlimiv 1926 | . . . 4 ⊢ (∃𝑛 𝑛 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
10 | 6, 9 | sylbi 216 | . . 3 ⊢ (¬ (𝑋𝐹𝑌) = ∅ → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
11 | 10 | con1i 147 | . 2 ⊢ (¬ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) |
12 | 5, 11 | sylbi 216 | 1 ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∉ wnel 3043 ⦋csb 3892 ∅c0 4323 (class class class)co 7420 ∈ cmpo 7422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 |
This theorem is referenced by: nbgrnvtx0 29165 |
Copyright terms: Public domain | W3C validator |