MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxneldm Structured version   Visualization version   GIF version

Theorem mpoxneldm 8216
Description: If the first argument of an operation given by a maps-to rule is not an element of the first component of the domain or the second argument is not an element of the second component of the domain depending on the first argument, then the value of the operation is the empty set. (Contributed by AV, 25-Oct-2020.)
Hypothesis
Ref Expression
mpoxeldm.f 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
mpoxneldm ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) → (𝑋𝐹𝑌) = ∅)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑦,𝐷   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐷(𝑥)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem mpoxneldm
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-nel 3038 . . . 4 (𝑋𝐶 ↔ ¬ 𝑋𝐶)
2 df-nel 3038 . . . 4 (𝑌𝑋 / 𝑥𝐷 ↔ ¬ 𝑌𝑋 / 𝑥𝐷)
31, 2orbi12i 914 . . 3 ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) ↔ (¬ 𝑋𝐶 ∨ ¬ 𝑌𝑋 / 𝑥𝐷))
4 ianor 983 . . 3 (¬ (𝑋𝐶𝑌𝑋 / 𝑥𝐷) ↔ (¬ 𝑋𝐶 ∨ ¬ 𝑌𝑋 / 𝑥𝐷))
53, 4bitr4i 278 . 2 ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) ↔ ¬ (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
6 neq0 4332 . . . 4 (¬ (𝑋𝐹𝑌) = ∅ ↔ ∃𝑛 𝑛 ∈ (𝑋𝐹𝑌))
7 mpoxeldm.f . . . . . 6 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
87mpoxeldm 8215 . . . . 5 (𝑛 ∈ (𝑋𝐹𝑌) → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
98exlimiv 1930 . . . 4 (∃𝑛 𝑛 ∈ (𝑋𝐹𝑌) → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
106, 9sylbi 217 . . 3 (¬ (𝑋𝐹𝑌) = ∅ → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
1110con1i 147 . 2 (¬ (𝑋𝐶𝑌𝑋 / 𝑥𝐷) → (𝑋𝐹𝑌) = ∅)
125, 11sylbi 217 1 ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) → (𝑋𝐹𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wnel 3037  csb 3879  c0 4313  (class class class)co 7410  cmpo 7412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994
This theorem is referenced by:  nbgrnvtx0  29323  clnbgrnvtx0  47808
  Copyright terms: Public domain W3C validator