MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxneldm Structured version   Visualization version   GIF version

Theorem mpoxneldm 7954
Description: If the first argument of an operation given by a maps-to rule is not an element of the first component of the domain or the second argument is not an element of the second component of the domain depending on the first argument, then the value of the operation is the empty set. (Contributed by AV, 25-Oct-2020.)
Hypothesis
Ref Expression
mpoxeldm.f 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
mpoxneldm ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) → (𝑋𝐹𝑌) = ∅)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑦,𝐷   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐷(𝑥)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem mpoxneldm
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-nel 3047 . . . 4 (𝑋𝐶 ↔ ¬ 𝑋𝐶)
2 df-nel 3047 . . . 4 (𝑌𝑋 / 𝑥𝐷 ↔ ¬ 𝑌𝑋 / 𝑥𝐷)
31, 2orbi12i 915 . . 3 ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) ↔ (¬ 𝑋𝐶 ∨ ¬ 𝑌𝑋 / 𝑥𝐷))
4 ianor 982 . . 3 (¬ (𝑋𝐶𝑌𝑋 / 𝑥𝐷) ↔ (¬ 𝑋𝐶 ∨ ¬ 𝑌𝑋 / 𝑥𝐷))
53, 4bitr4i 281 . 2 ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) ↔ ¬ (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
6 neq0 4260 . . . 4 (¬ (𝑋𝐹𝑌) = ∅ ↔ ∃𝑛 𝑛 ∈ (𝑋𝐹𝑌))
7 mpoxeldm.f . . . . . 6 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
87mpoxeldm 7953 . . . . 5 (𝑛 ∈ (𝑋𝐹𝑌) → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
98exlimiv 1938 . . . 4 (∃𝑛 𝑛 ∈ (𝑋𝐹𝑌) → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
106, 9sylbi 220 . . 3 (¬ (𝑋𝐹𝑌) = ∅ → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
1110con1i 149 . 2 (¬ (𝑋𝐶𝑌𝑋 / 𝑥𝐷) → (𝑋𝐹𝑌) = ∅)
125, 11sylbi 220 1 ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) → (𝑋𝐹𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wex 1787  wcel 2110  wnel 3046  csb 3811  c0 4237  (class class class)co 7213  cmpo 7215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762
This theorem is referenced by:  nbgrnvtx0  27427
  Copyright terms: Public domain W3C validator