Step | Hyp | Ref
| Expression |
1 | | n0i 4267 |
. 2
⊢ (𝑋 ∈ 𝑄 → ¬ 𝑄 = ∅) |
2 | | pf1rcl.q |
. . . 4
⊢ 𝑄 = ran
(eval1‘𝑅) |
3 | | eqid 2738 |
. . . . . 6
⊢
(eval1‘𝑅) = (eval1‘𝑅) |
4 | | eqid 2738 |
. . . . . 6
⊢
(1o eval 𝑅) = (1o eval 𝑅) |
5 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
6 | 3, 4, 5 | evl1fval 21494 |
. . . . 5
⊢
(eval1‘𝑅) = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m
1o)) ↦ (𝑥
∘ (𝑦 ∈
(Base‘𝑅) ↦
(1o × {𝑦})))) ∘ (1o eval 𝑅)) |
7 | 6 | rneqi 5846 |
. . . 4
⊢ ran
(eval1‘𝑅)
= ran ((𝑥 ∈
((Base‘𝑅)
↑m ((Base‘𝑅) ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o ×
{𝑦})))) ∘
(1o eval 𝑅)) |
8 | | rnco2 6157 |
. . . 4
⊢ ran
((𝑥 ∈
((Base‘𝑅)
↑m ((Base‘𝑅) ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o ×
{𝑦})))) ∘
(1o eval 𝑅)) =
((𝑥 ∈
((Base‘𝑅)
↑m ((Base‘𝑅) ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o ×
{𝑦})))) “ ran
(1o eval 𝑅)) |
9 | 2, 7, 8 | 3eqtri 2770 |
. . 3
⊢ 𝑄 = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m
1o)) ↦ (𝑥
∘ (𝑦 ∈
(Base‘𝑅) ↦
(1o × {𝑦})))) “ ran (1o eval 𝑅)) |
10 | | inss2 4163 |
. . . . 5
⊢ (dom
(𝑥 ∈
((Base‘𝑅)
↑m ((Base‘𝑅) ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o ×
{𝑦})))) ∩ ran
(1o eval 𝑅))
⊆ ran (1o eval 𝑅) |
11 | | neq0 4279 |
. . . . . . 7
⊢ (¬
ran (1o eval 𝑅)
= ∅ ↔ ∃𝑥
𝑥 ∈ ran (1o
eval 𝑅)) |
12 | 4, 5 | evlval 21305 |
. . . . . . . . . . 11
⊢
(1o eval 𝑅) = ((1o evalSub 𝑅)‘(Base‘𝑅)) |
13 | 12 | rneqi 5846 |
. . . . . . . . . 10
⊢ ran
(1o eval 𝑅) =
ran ((1o evalSub 𝑅)‘(Base‘𝑅)) |
14 | 13 | mpfrcl 21295 |
. . . . . . . . 9
⊢ (𝑥 ∈ ran (1o eval
𝑅) → (1o
∈ V ∧ 𝑅 ∈
CRing ∧ (Base‘𝑅)
∈ (SubRing‘𝑅))) |
15 | 14 | simp2d 1142 |
. . . . . . . 8
⊢ (𝑥 ∈ ran (1o eval
𝑅) → 𝑅 ∈ CRing) |
16 | 15 | exlimiv 1933 |
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ ran (1o eval
𝑅) → 𝑅 ∈ CRing) |
17 | 11, 16 | sylbi 216 |
. . . . . 6
⊢ (¬
ran (1o eval 𝑅)
= ∅ → 𝑅 ∈
CRing) |
18 | 17 | con1i 147 |
. . . . 5
⊢ (¬
𝑅 ∈ CRing → ran
(1o eval 𝑅) =
∅) |
19 | | sseq0 4333 |
. . . . 5
⊢ (((dom
(𝑥 ∈
((Base‘𝑅)
↑m ((Base‘𝑅) ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o ×
{𝑦})))) ∩ ran
(1o eval 𝑅))
⊆ ran (1o eval 𝑅) ∧ ran (1o eval 𝑅) = ∅) → (dom (𝑥 ∈ ((Base‘𝑅) ↑m
((Base‘𝑅)
↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o
eval 𝑅)) =
∅) |
20 | 10, 18, 19 | sylancr 587 |
. . . 4
⊢ (¬
𝑅 ∈ CRing → (dom
(𝑥 ∈
((Base‘𝑅)
↑m ((Base‘𝑅) ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o ×
{𝑦})))) ∩ ran
(1o eval 𝑅)) =
∅) |
21 | | imadisj 5988 |
. . . 4
⊢ (((𝑥 ∈ ((Base‘𝑅) ↑m
((Base‘𝑅)
↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o
eval 𝑅)) = ∅ ↔
(dom (𝑥 ∈
((Base‘𝑅)
↑m ((Base‘𝑅) ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o ×
{𝑦})))) ∩ ran
(1o eval 𝑅)) =
∅) |
22 | 20, 21 | sylibr 233 |
. . 3
⊢ (¬
𝑅 ∈ CRing →
((𝑥 ∈
((Base‘𝑅)
↑m ((Base‘𝑅) ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o ×
{𝑦})))) “ ran
(1o eval 𝑅)) =
∅) |
23 | 9, 22 | eqtrid 2790 |
. 2
⊢ (¬
𝑅 ∈ CRing → 𝑄 = ∅) |
24 | 1, 23 | nsyl2 141 |
1
⊢ (𝑋 ∈ 𝑄 → 𝑅 ∈ CRing) |