MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1rcl Structured version   Visualization version   GIF version

Theorem pf1rcl 22374
Description: Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
Assertion
Ref Expression
pf1rcl (𝑋𝑄𝑅 ∈ CRing)

Proof of Theorem pf1rcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4363 . 2 (𝑋𝑄 → ¬ 𝑄 = ∅)
2 pf1rcl.q . . . 4 𝑄 = ran (eval1𝑅)
3 eqid 2740 . . . . . 6 (eval1𝑅) = (eval1𝑅)
4 eqid 2740 . . . . . 6 (1o eval 𝑅) = (1o eval 𝑅)
5 eqid 2740 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
63, 4, 5evl1fval 22353 . . . . 5 (eval1𝑅) = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
76rneqi 5962 . . . 4 ran (eval1𝑅) = ran ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
8 rnco2 6284 . . . 4 ran ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅))
92, 7, 83eqtri 2772 . . 3 𝑄 = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅))
10 inss2 4259 . . . . 5 (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) ⊆ ran (1o eval 𝑅)
11 neq0 4375 . . . . . . 7 (¬ ran (1o eval 𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ran (1o eval 𝑅))
124, 5evlval 22142 . . . . . . . . . . 11 (1o eval 𝑅) = ((1o evalSub 𝑅)‘(Base‘𝑅))
1312rneqi 5962 . . . . . . . . . 10 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘(Base‘𝑅))
1413mpfrcl 22132 . . . . . . . . 9 (𝑥 ∈ ran (1o eval 𝑅) → (1o ∈ V ∧ 𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)))
1514simp2d 1143 . . . . . . . 8 (𝑥 ∈ ran (1o eval 𝑅) → 𝑅 ∈ CRing)
1615exlimiv 1929 . . . . . . 7 (∃𝑥 𝑥 ∈ ran (1o eval 𝑅) → 𝑅 ∈ CRing)
1711, 16sylbi 217 . . . . . 6 (¬ ran (1o eval 𝑅) = ∅ → 𝑅 ∈ CRing)
1817con1i 147 . . . . 5 𝑅 ∈ CRing → ran (1o eval 𝑅) = ∅)
19 sseq0 4426 . . . . 5 (((dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) ⊆ ran (1o eval 𝑅) ∧ ran (1o eval 𝑅) = ∅) → (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) = ∅)
2010, 18, 19sylancr 586 . . . 4 𝑅 ∈ CRing → (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) = ∅)
21 imadisj 6109 . . . 4 (((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅)) = ∅ ↔ (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) = ∅)
2220, 21sylibr 234 . . 3 𝑅 ∈ CRing → ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅)) = ∅)
239, 22eqtrid 2792 . 2 𝑅 ∈ CRing → 𝑄 = ∅)
241, 23nsyl2 141 1 (𝑋𝑄𝑅 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cin 3975  wss 3976  c0 4352  {csn 4648  cmpt 5249   × cxp 5698  dom cdm 5700  ran crn 5701  cima 5703  ccom 5704  cfv 6573  (class class class)co 7448  1oc1o 8515  m cmap 8884  Basecbs 17258  CRingccrg 20261  SubRingcsubrg 20595   evalSub ces 22119   eval cevl 22120  eval1ce1 22339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-evls 22121  df-evl 22122  df-evl1 22341
This theorem is referenced by:  pf1f  22375  pf1mpf  22377  pf1addcl  22378  pf1mulcl  22379  pf1ind  22380
  Copyright terms: Public domain W3C validator