MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1rcl Structured version   Visualization version   GIF version

Theorem pf1rcl 20973
Description: Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
Assertion
Ref Expression
pf1rcl (𝑋𝑄𝑅 ∈ CRing)

Proof of Theorem pf1rcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4249 . 2 (𝑋𝑄 → ¬ 𝑄 = ∅)
2 pf1rcl.q . . . 4 𝑄 = ran (eval1𝑅)
3 eqid 2798 . . . . . 6 (eval1𝑅) = (eval1𝑅)
4 eqid 2798 . . . . . 6 (1o eval 𝑅) = (1o eval 𝑅)
5 eqid 2798 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
63, 4, 5evl1fval 20952 . . . . 5 (eval1𝑅) = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
76rneqi 5771 . . . 4 ran (eval1𝑅) = ran ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
8 rnco2 6073 . . . 4 ran ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅))
92, 7, 83eqtri 2825 . . 3 𝑄 = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅))
10 inss2 4156 . . . . 5 (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) ⊆ ran (1o eval 𝑅)
11 neq0 4259 . . . . . . 7 (¬ ran (1o eval 𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ran (1o eval 𝑅))
124, 5evlval 20767 . . . . . . . . . . 11 (1o eval 𝑅) = ((1o evalSub 𝑅)‘(Base‘𝑅))
1312rneqi 5771 . . . . . . . . . 10 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘(Base‘𝑅))
1413mpfrcl 20757 . . . . . . . . 9 (𝑥 ∈ ran (1o eval 𝑅) → (1o ∈ V ∧ 𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)))
1514simp2d 1140 . . . . . . . 8 (𝑥 ∈ ran (1o eval 𝑅) → 𝑅 ∈ CRing)
1615exlimiv 1931 . . . . . . 7 (∃𝑥 𝑥 ∈ ran (1o eval 𝑅) → 𝑅 ∈ CRing)
1711, 16sylbi 220 . . . . . 6 (¬ ran (1o eval 𝑅) = ∅ → 𝑅 ∈ CRing)
1817con1i 149 . . . . 5 𝑅 ∈ CRing → ran (1o eval 𝑅) = ∅)
19 sseq0 4307 . . . . 5 (((dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) ⊆ ran (1o eval 𝑅) ∧ ran (1o eval 𝑅) = ∅) → (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) = ∅)
2010, 18, 19sylancr 590 . . . 4 𝑅 ∈ CRing → (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) = ∅)
21 imadisj 5915 . . . 4 (((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅)) = ∅ ↔ (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) = ∅)
2220, 21sylibr 237 . . 3 𝑅 ∈ CRing → ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅)) = ∅)
239, 22syl5eq 2845 . 2 𝑅 ∈ CRing → 𝑄 = ∅)
241, 23nsyl2 143 1 (𝑋𝑄𝑅 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441  cin 3880  wss 3881  c0 4243  {csn 4525  cmpt 5110   × cxp 5517  dom cdm 5519  ran crn 5520  cima 5522  ccom 5523  cfv 6324  (class class class)co 7135  1oc1o 8078  m cmap 8389  Basecbs 16475  CRingccrg 19291  SubRingcsubrg 19524   evalSub ces 20743   eval cevl 20744  eval1ce1 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-evls 20745  df-evl 20746  df-evl1 20940
This theorem is referenced by:  pf1f  20974  pf1mpf  20976  pf1addcl  20977  pf1mulcl  20978  pf1ind  20979
  Copyright terms: Public domain W3C validator