MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1rcl Structured version   Visualization version   GIF version

Theorem pf1rcl 22264
Description: Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
Assertion
Ref Expression
pf1rcl (𝑋𝑄𝑅 ∈ CRing)

Proof of Theorem pf1rcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4287 . 2 (𝑋𝑄 → ¬ 𝑄 = ∅)
2 pf1rcl.q . . . 4 𝑄 = ran (eval1𝑅)
3 eqid 2731 . . . . . 6 (eval1𝑅) = (eval1𝑅)
4 eqid 2731 . . . . . 6 (1o eval 𝑅) = (1o eval 𝑅)
5 eqid 2731 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
63, 4, 5evl1fval 22243 . . . . 5 (eval1𝑅) = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
76rneqi 5876 . . . 4 ran (eval1𝑅) = ran ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
8 rnco2 6201 . . . 4 ran ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅))
92, 7, 83eqtri 2758 . . 3 𝑄 = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅))
10 inss2 4185 . . . . 5 (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) ⊆ ran (1o eval 𝑅)
11 neq0 4299 . . . . . . 7 (¬ ran (1o eval 𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ran (1o eval 𝑅))
124, 5evlval 22030 . . . . . . . . . . 11 (1o eval 𝑅) = ((1o evalSub 𝑅)‘(Base‘𝑅))
1312rneqi 5876 . . . . . . . . . 10 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘(Base‘𝑅))
1413mpfrcl 22020 . . . . . . . . 9 (𝑥 ∈ ran (1o eval 𝑅) → (1o ∈ V ∧ 𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)))
1514simp2d 1143 . . . . . . . 8 (𝑥 ∈ ran (1o eval 𝑅) → 𝑅 ∈ CRing)
1615exlimiv 1931 . . . . . . 7 (∃𝑥 𝑥 ∈ ran (1o eval 𝑅) → 𝑅 ∈ CRing)
1711, 16sylbi 217 . . . . . 6 (¬ ran (1o eval 𝑅) = ∅ → 𝑅 ∈ CRing)
1817con1i 147 . . . . 5 𝑅 ∈ CRing → ran (1o eval 𝑅) = ∅)
19 sseq0 4350 . . . . 5 (((dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) ⊆ ran (1o eval 𝑅) ∧ ran (1o eval 𝑅) = ∅) → (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) = ∅)
2010, 18, 19sylancr 587 . . . 4 𝑅 ∈ CRing → (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) = ∅)
21 imadisj 6028 . . . 4 (((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅)) = ∅ ↔ (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) = ∅)
2220, 21sylibr 234 . . 3 𝑅 ∈ CRing → ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅)) = ∅)
239, 22eqtrid 2778 . 2 𝑅 ∈ CRing → 𝑄 = ∅)
241, 23nsyl2 141 1 (𝑋𝑄𝑅 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cin 3896  wss 3897  c0 4280  {csn 4573  cmpt 5170   × cxp 5612  dom cdm 5614  ran crn 5615  cima 5617  ccom 5618  cfv 6481  (class class class)co 7346  1oc1o 8378  m cmap 8750  Basecbs 17120  CRingccrg 20152  SubRingcsubrg 20484   evalSub ces 22007   eval cevl 22008  eval1ce1 22229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-evls 22009  df-evl 22010  df-evl1 22231
This theorem is referenced by:  pf1f  22265  pf1mpf  22267  pf1addcl  22268  pf1mulcl  22269  pf1ind  22270
  Copyright terms: Public domain W3C validator