MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1rcl Structured version   Visualization version   GIF version

Theorem pf1rcl 21425
Description: Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
Assertion
Ref Expression
pf1rcl (𝑋𝑄𝑅 ∈ CRing)

Proof of Theorem pf1rcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4264 . 2 (𝑋𝑄 → ¬ 𝑄 = ∅)
2 pf1rcl.q . . . 4 𝑄 = ran (eval1𝑅)
3 eqid 2738 . . . . . 6 (eval1𝑅) = (eval1𝑅)
4 eqid 2738 . . . . . 6 (1o eval 𝑅) = (1o eval 𝑅)
5 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
63, 4, 5evl1fval 21404 . . . . 5 (eval1𝑅) = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
76rneqi 5835 . . . 4 ran (eval1𝑅) = ran ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
8 rnco2 6146 . . . 4 ran ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅))
92, 7, 83eqtri 2770 . . 3 𝑄 = ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅))
10 inss2 4160 . . . . 5 (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) ⊆ ran (1o eval 𝑅)
11 neq0 4276 . . . . . . 7 (¬ ran (1o eval 𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ran (1o eval 𝑅))
124, 5evlval 21215 . . . . . . . . . . 11 (1o eval 𝑅) = ((1o evalSub 𝑅)‘(Base‘𝑅))
1312rneqi 5835 . . . . . . . . . 10 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘(Base‘𝑅))
1413mpfrcl 21205 . . . . . . . . 9 (𝑥 ∈ ran (1o eval 𝑅) → (1o ∈ V ∧ 𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)))
1514simp2d 1141 . . . . . . . 8 (𝑥 ∈ ran (1o eval 𝑅) → 𝑅 ∈ CRing)
1615exlimiv 1934 . . . . . . 7 (∃𝑥 𝑥 ∈ ran (1o eval 𝑅) → 𝑅 ∈ CRing)
1711, 16sylbi 216 . . . . . 6 (¬ ran (1o eval 𝑅) = ∅ → 𝑅 ∈ CRing)
1817con1i 147 . . . . 5 𝑅 ∈ CRing → ran (1o eval 𝑅) = ∅)
19 sseq0 4330 . . . . 5 (((dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) ⊆ ran (1o eval 𝑅) ∧ ran (1o eval 𝑅) = ∅) → (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) = ∅)
2010, 18, 19sylancr 586 . . . 4 𝑅 ∈ CRing → (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) = ∅)
21 imadisj 5977 . . . 4 (((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅)) = ∅ ↔ (dom (𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) ∩ ran (1o eval 𝑅)) = ∅)
2220, 21sylibr 233 . . 3 𝑅 ∈ CRing → ((𝑥 ∈ ((Base‘𝑅) ↑m ((Base‘𝑅) ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1o × {𝑦})))) “ ran (1o eval 𝑅)) = ∅)
239, 22eqtrid 2790 . 2 𝑅 ∈ CRing → 𝑄 = ∅)
241, 23nsyl2 141 1 (𝑋𝑄𝑅 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  cin 3882  wss 3883  c0 4253  {csn 4558  cmpt 5153   × cxp 5578  dom cdm 5580  ran crn 5581  cima 5583  ccom 5584  cfv 6418  (class class class)co 7255  1oc1o 8260  m cmap 8573  Basecbs 16840  CRingccrg 19699  SubRingcsubrg 19935   evalSub ces 21190   eval cevl 21191  eval1ce1 21390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-evls 21192  df-evl 21193  df-evl1 21392
This theorem is referenced by:  pf1f  21426  pf1mpf  21428  pf1addcl  21429  pf1mulcl  21430  pf1ind  21431
  Copyright terms: Public domain W3C validator