MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1rcl Structured version   Visualization version   GIF version

Theorem pf1rcl 19989
Description: Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
Assertion
Ref Expression
pf1rcl (𝑋𝑄𝑅 ∈ CRing)

Proof of Theorem pf1rcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4086 . 2 (𝑋𝑄 → ¬ 𝑄 = ∅)
2 pf1rcl.q . . . 4 𝑄 = ran (eval1𝑅)
3 eqid 2765 . . . . . 6 (eval1𝑅) = (eval1𝑅)
4 eqid 2765 . . . . . 6 (1𝑜 eval 𝑅) = (1𝑜 eval 𝑅)
5 eqid 2765 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
63, 4, 5evl1fval 19968 . . . . 5 (eval1𝑅) = ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅))
76rneqi 5522 . . . 4 ran (eval1𝑅) = ran ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅))
8 rnco2 5830 . . . 4 ran ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅)) = ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) “ ran (1𝑜 eval 𝑅))
92, 7, 83eqtri 2791 . . 3 𝑄 = ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) “ ran (1𝑜 eval 𝑅))
10 inss2 3995 . . . . 5 (dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) ⊆ ran (1𝑜 eval 𝑅)
11 neq0 4096 . . . . . . 7 (¬ ran (1𝑜 eval 𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ran (1𝑜 eval 𝑅))
124, 5evlval 19800 . . . . . . . . . . 11 (1𝑜 eval 𝑅) = ((1𝑜 evalSub 𝑅)‘(Base‘𝑅))
1312rneqi 5522 . . . . . . . . . 10 ran (1𝑜 eval 𝑅) = ran ((1𝑜 evalSub 𝑅)‘(Base‘𝑅))
1413mpfrcl 19794 . . . . . . . . 9 (𝑥 ∈ ran (1𝑜 eval 𝑅) → (1𝑜 ∈ V ∧ 𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)))
1514simp2d 1173 . . . . . . . 8 (𝑥 ∈ ran (1𝑜 eval 𝑅) → 𝑅 ∈ CRing)
1615exlimiv 2025 . . . . . . 7 (∃𝑥 𝑥 ∈ ran (1𝑜 eval 𝑅) → 𝑅 ∈ CRing)
1711, 16sylbi 208 . . . . . 6 (¬ ran (1𝑜 eval 𝑅) = ∅ → 𝑅 ∈ CRing)
1817con1i 146 . . . . 5 𝑅 ∈ CRing → ran (1𝑜 eval 𝑅) = ∅)
19 sseq0 4139 . . . . 5 (((dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) ⊆ ran (1𝑜 eval 𝑅) ∧ ran (1𝑜 eval 𝑅) = ∅) → (dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) = ∅)
2010, 18, 19sylancr 581 . . . 4 𝑅 ∈ CRing → (dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) = ∅)
21 imadisj 5668 . . . 4 (((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) “ ran (1𝑜 eval 𝑅)) = ∅ ↔ (dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) = ∅)
2220, 21sylibr 225 . . 3 𝑅 ∈ CRing → ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) “ ran (1𝑜 eval 𝑅)) = ∅)
239, 22syl5eq 2811 . 2 𝑅 ∈ CRing → 𝑄 = ∅)
241, 23nsyl2 144 1 (𝑋𝑄𝑅 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1652  wex 1874  wcel 2155  Vcvv 3350  cin 3733  wss 3734  c0 4081  {csn 4336  cmpt 4890   × cxp 5277  dom cdm 5279  ran crn 5280  cima 5282  ccom 5283  cfv 6070  (class class class)co 6844  1𝑜c1o 7759  𝑚 cmap 8062  Basecbs 16133  CRingccrg 18818  SubRingcsubrg 19048   evalSub ces 19780   eval cevl 19781  eval1ce1 19955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-evls 19782  df-evl 19783  df-evl1 19957
This theorem is referenced by:  pf1f  19990  pf1mpf  19992  pf1addcl  19993  pf1mulcl  19994  pf1ind  19995
  Copyright terms: Public domain W3C validator