Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoxopxnop0 | Structured version Visualization version GIF version |
Description: If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is not an ordered pair, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
Ref | Expression |
---|---|
mpoxopxnop0 | ⊢ (¬ 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 4276 | . . 3 ⊢ (¬ (𝑉𝐹𝐾) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑉𝐹𝐾)) | |
2 | mpoxopn0yelv.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
3 | 2 | dmmpossx 7879 | . . . . . 6 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) |
4 | elfvdm 6788 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹‘〈𝑉, 𝐾〉) → 〈𝑉, 𝐾〉 ∈ dom 𝐹) | |
5 | df-ov 7258 | . . . . . . 7 ⊢ (𝑉𝐹𝐾) = (𝐹‘〈𝑉, 𝐾〉) | |
6 | 4, 5 | eleq2s 2857 | . . . . . 6 ⊢ (𝑥 ∈ (𝑉𝐹𝐾) → 〈𝑉, 𝐾〉 ∈ dom 𝐹) |
7 | 3, 6 | sselid 3915 | . . . . 5 ⊢ (𝑥 ∈ (𝑉𝐹𝐾) → 〈𝑉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥))) |
8 | fveq2 6756 | . . . . . . 7 ⊢ (𝑥 = 𝑉 → (1st ‘𝑥) = (1st ‘𝑉)) | |
9 | 8 | opeliunxp2 5736 | . . . . . 6 ⊢ (〈𝑉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) ↔ (𝑉 ∈ V ∧ 𝐾 ∈ (1st ‘𝑉))) |
10 | eluni 4839 | . . . . . . . . 9 ⊢ (𝐾 ∈ ∪ dom {𝑉} ↔ ∃𝑛(𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉})) | |
11 | ne0i 4265 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ dom {𝑉} → dom {𝑉} ≠ ∅) | |
12 | 11 | ad2antlr 723 | . . . . . . . . . . . 12 ⊢ (((𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → dom {𝑉} ≠ ∅) |
13 | dmsnn0 6099 | . . . . . . . . . . . 12 ⊢ (𝑉 ∈ (V × V) ↔ dom {𝑉} ≠ ∅) | |
14 | 12, 13 | sylibr 233 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → 𝑉 ∈ (V × V)) |
15 | 14 | ex 412 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
16 | 15 | exlimiv 1934 | . . . . . . . . 9 ⊢ (∃𝑛(𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
17 | 10, 16 | sylbi 216 | . . . . . . . 8 ⊢ (𝐾 ∈ ∪ dom {𝑉} → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
18 | 1stval 7806 | . . . . . . . 8 ⊢ (1st ‘𝑉) = ∪ dom {𝑉} | |
19 | 17, 18 | eleq2s 2857 | . . . . . . 7 ⊢ (𝐾 ∈ (1st ‘𝑉) → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
20 | 19 | impcom 407 | . . . . . 6 ⊢ ((𝑉 ∈ V ∧ 𝐾 ∈ (1st ‘𝑉)) → 𝑉 ∈ (V × V)) |
21 | 9, 20 | sylbi 216 | . . . . 5 ⊢ (〈𝑉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) → 𝑉 ∈ (V × V)) |
22 | 7, 21 | syl 17 | . . . 4 ⊢ (𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V)) |
23 | 22 | exlimiv 1934 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V)) |
24 | 1, 23 | sylbi 216 | . 2 ⊢ (¬ (𝑉𝐹𝐾) = ∅ → 𝑉 ∈ (V × V)) |
25 | 24 | con1i 147 | 1 ⊢ (¬ 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 {csn 4558 〈cop 4564 ∪ cuni 4836 ∪ ciun 4921 × cxp 5578 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: mpoxopx0ov0 8003 mpoxopxprcov0 8004 |
Copyright terms: Public domain | W3C validator |