| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoxopxnop0 | Structured version Visualization version GIF version | ||
| Description: If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is not an ordered pair, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
| Ref | Expression |
|---|---|
| mpoxopxnop0 | ⊢ (¬ 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 4302 | . . 3 ⊢ (¬ (𝑉𝐹𝐾) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑉𝐹𝐾)) | |
| 2 | mpoxopn0yelv.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
| 3 | 2 | dmmpossx 7998 | . . . . . 6 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) |
| 4 | elfvdm 6856 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹‘〈𝑉, 𝐾〉) → 〈𝑉, 𝐾〉 ∈ dom 𝐹) | |
| 5 | df-ov 7349 | . . . . . . 7 ⊢ (𝑉𝐹𝐾) = (𝐹‘〈𝑉, 𝐾〉) | |
| 6 | 4, 5 | eleq2s 2849 | . . . . . 6 ⊢ (𝑥 ∈ (𝑉𝐹𝐾) → 〈𝑉, 𝐾〉 ∈ dom 𝐹) |
| 7 | 3, 6 | sselid 3932 | . . . . 5 ⊢ (𝑥 ∈ (𝑉𝐹𝐾) → 〈𝑉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥))) |
| 8 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = 𝑉 → (1st ‘𝑥) = (1st ‘𝑉)) | |
| 9 | 8 | opeliunxp2 5778 | . . . . . 6 ⊢ (〈𝑉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) ↔ (𝑉 ∈ V ∧ 𝐾 ∈ (1st ‘𝑉))) |
| 10 | eluni 4862 | . . . . . . . . 9 ⊢ (𝐾 ∈ ∪ dom {𝑉} ↔ ∃𝑛(𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉})) | |
| 11 | ne0i 4291 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ dom {𝑉} → dom {𝑉} ≠ ∅) | |
| 12 | 11 | ad2antlr 727 | . . . . . . . . . . . 12 ⊢ (((𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → dom {𝑉} ≠ ∅) |
| 13 | dmsnn0 6154 | . . . . . . . . . . . 12 ⊢ (𝑉 ∈ (V × V) ↔ dom {𝑉} ≠ ∅) | |
| 14 | 12, 13 | sylibr 234 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → 𝑉 ∈ (V × V)) |
| 15 | 14 | ex 412 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
| 16 | 15 | exlimiv 1931 | . . . . . . . . 9 ⊢ (∃𝑛(𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
| 17 | 10, 16 | sylbi 217 | . . . . . . . 8 ⊢ (𝐾 ∈ ∪ dom {𝑉} → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
| 18 | 1stval 7923 | . . . . . . . 8 ⊢ (1st ‘𝑉) = ∪ dom {𝑉} | |
| 19 | 17, 18 | eleq2s 2849 | . . . . . . 7 ⊢ (𝐾 ∈ (1st ‘𝑉) → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
| 20 | 19 | impcom 407 | . . . . . 6 ⊢ ((𝑉 ∈ V ∧ 𝐾 ∈ (1st ‘𝑉)) → 𝑉 ∈ (V × V)) |
| 21 | 9, 20 | sylbi 217 | . . . . 5 ⊢ (〈𝑉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) → 𝑉 ∈ (V × V)) |
| 22 | 7, 21 | syl 17 | . . . 4 ⊢ (𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V)) |
| 23 | 22 | exlimiv 1931 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V)) |
| 24 | 1, 23 | sylbi 217 | . 2 ⊢ (¬ (𝑉𝐹𝐾) = ∅ → 𝑉 ∈ (V × V)) |
| 25 | 24 | con1i 147 | 1 ⊢ (¬ 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4283 {csn 4576 〈cop 4582 ∪ cuni 4859 ∪ ciun 4941 × cxp 5614 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: mpoxopx0ov0 8146 mpoxopxprcov0 8147 |
| Copyright terms: Public domain | W3C validator |