| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoxopxnop0 | Structured version Visualization version GIF version | ||
| Description: If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is not an ordered pair, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
| Ref | Expression |
|---|---|
| mpoxopxnop0 | ⊢ (¬ 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 4301 | . . 3 ⊢ (¬ (𝑉𝐹𝐾) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑉𝐹𝐾)) | |
| 2 | mpoxopn0yelv.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
| 3 | 2 | dmmpossx 8004 | . . . . . 6 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) |
| 4 | elfvdm 6862 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹‘〈𝑉, 𝐾〉) → 〈𝑉, 𝐾〉 ∈ dom 𝐹) | |
| 5 | df-ov 7355 | . . . . . . 7 ⊢ (𝑉𝐹𝐾) = (𝐹‘〈𝑉, 𝐾〉) | |
| 6 | 4, 5 | eleq2s 2851 | . . . . . 6 ⊢ (𝑥 ∈ (𝑉𝐹𝐾) → 〈𝑉, 𝐾〉 ∈ dom 𝐹) |
| 7 | 3, 6 | sselid 3928 | . . . . 5 ⊢ (𝑥 ∈ (𝑉𝐹𝐾) → 〈𝑉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥))) |
| 8 | fveq2 6828 | . . . . . . 7 ⊢ (𝑥 = 𝑉 → (1st ‘𝑥) = (1st ‘𝑉)) | |
| 9 | 8 | opeliunxp2 5782 | . . . . . 6 ⊢ (〈𝑉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) ↔ (𝑉 ∈ V ∧ 𝐾 ∈ (1st ‘𝑉))) |
| 10 | eluni 4861 | . . . . . . . . 9 ⊢ (𝐾 ∈ ∪ dom {𝑉} ↔ ∃𝑛(𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉})) | |
| 11 | ne0i 4290 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ dom {𝑉} → dom {𝑉} ≠ ∅) | |
| 12 | 11 | ad2antlr 727 | . . . . . . . . . . . 12 ⊢ (((𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → dom {𝑉} ≠ ∅) |
| 13 | dmsnn0 6159 | . . . . . . . . . . . 12 ⊢ (𝑉 ∈ (V × V) ↔ dom {𝑉} ≠ ∅) | |
| 14 | 12, 13 | sylibr 234 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → 𝑉 ∈ (V × V)) |
| 15 | 14 | ex 412 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
| 16 | 15 | exlimiv 1931 | . . . . . . . . 9 ⊢ (∃𝑛(𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
| 17 | 10, 16 | sylbi 217 | . . . . . . . 8 ⊢ (𝐾 ∈ ∪ dom {𝑉} → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
| 18 | 1stval 7929 | . . . . . . . 8 ⊢ (1st ‘𝑉) = ∪ dom {𝑉} | |
| 19 | 17, 18 | eleq2s 2851 | . . . . . . 7 ⊢ (𝐾 ∈ (1st ‘𝑉) → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
| 20 | 19 | impcom 407 | . . . . . 6 ⊢ ((𝑉 ∈ V ∧ 𝐾 ∈ (1st ‘𝑉)) → 𝑉 ∈ (V × V)) |
| 21 | 9, 20 | sylbi 217 | . . . . 5 ⊢ (〈𝑉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) → 𝑉 ∈ (V × V)) |
| 22 | 7, 21 | syl 17 | . . . 4 ⊢ (𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V)) |
| 23 | 22 | exlimiv 1931 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V)) |
| 24 | 1, 23 | sylbi 217 | . 2 ⊢ (¬ (𝑉𝐹𝐾) = ∅ → 𝑉 ∈ (V × V)) |
| 25 | 24 | con1i 147 | 1 ⊢ (¬ 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∅c0 4282 {csn 4575 〈cop 4581 ∪ cuni 4858 ∪ ciun 4941 × cxp 5617 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 1st c1st 7925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 |
| This theorem is referenced by: mpoxopx0ov0 8152 mpoxopxprcov0 8153 |
| Copyright terms: Public domain | W3C validator |