Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopxnop0 Structured version   Visualization version   GIF version

Theorem mpoxopxnop0 7892
 Description: If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is not an ordered pair, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopxnop0 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑦)   𝐾(𝑦)   𝑉(𝑦)

Proof of Theorem mpoxopxnop0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 neq0 4245 . . 3 (¬ (𝑉𝐹𝐾) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑉𝐹𝐾))
2 mpoxopn0yelv.f . . . . . . 7 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
32dmmpossx 7769 . . . . . 6 dom 𝐹 𝑥 ∈ V ({𝑥} × (1st𝑥))
4 elfvdm 6691 . . . . . . 7 (𝑥 ∈ (𝐹‘⟨𝑉, 𝐾⟩) → ⟨𝑉, 𝐾⟩ ∈ dom 𝐹)
5 df-ov 7154 . . . . . . 7 (𝑉𝐹𝐾) = (𝐹‘⟨𝑉, 𝐾⟩)
64, 5eleq2s 2871 . . . . . 6 (𝑥 ∈ (𝑉𝐹𝐾) → ⟨𝑉, 𝐾⟩ ∈ dom 𝐹)
73, 6sseldi 3891 . . . . 5 (𝑥 ∈ (𝑉𝐹𝐾) → ⟨𝑉, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)))
8 fveq2 6659 . . . . . . 7 (𝑥 = 𝑉 → (1st𝑥) = (1st𝑉))
98opeliunxp2 5679 . . . . . 6 (⟨𝑉, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) ↔ (𝑉 ∈ V ∧ 𝐾 ∈ (1st𝑉)))
10 eluni 4802 . . . . . . . . 9 (𝐾 dom {𝑉} ↔ ∃𝑛(𝐾𝑛𝑛 ∈ dom {𝑉}))
11 ne0i 4234 . . . . . . . . . . . . 13 (𝑛 ∈ dom {𝑉} → dom {𝑉} ≠ ∅)
1211ad2antlr 727 . . . . . . . . . . . 12 (((𝐾𝑛𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → dom {𝑉} ≠ ∅)
13 dmsnn0 6037 . . . . . . . . . . . 12 (𝑉 ∈ (V × V) ↔ dom {𝑉} ≠ ∅)
1412, 13sylibr 237 . . . . . . . . . . 11 (((𝐾𝑛𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → 𝑉 ∈ (V × V))
1514ex 417 . . . . . . . . . 10 ((𝐾𝑛𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V)))
1615exlimiv 1932 . . . . . . . . 9 (∃𝑛(𝐾𝑛𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V)))
1710, 16sylbi 220 . . . . . . . 8 (𝐾 dom {𝑉} → (𝑉 ∈ V → 𝑉 ∈ (V × V)))
18 1stval 7696 . . . . . . . 8 (1st𝑉) = dom {𝑉}
1917, 18eleq2s 2871 . . . . . . 7 (𝐾 ∈ (1st𝑉) → (𝑉 ∈ V → 𝑉 ∈ (V × V)))
2019impcom 412 . . . . . 6 ((𝑉 ∈ V ∧ 𝐾 ∈ (1st𝑉)) → 𝑉 ∈ (V × V))
219, 20sylbi 220 . . . . 5 (⟨𝑉, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) → 𝑉 ∈ (V × V))
227, 21syl 17 . . . 4 (𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V))
2322exlimiv 1932 . . 3 (∃𝑥 𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V))
241, 23sylbi 220 . 2 (¬ (𝑉𝐹𝐾) = ∅ → 𝑉 ∈ (V × V))
2524con1i 149 1 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 400   = wceq 1539  ∃wex 1782   ∈ wcel 2112   ≠ wne 2952  Vcvv 3410  ∅c0 4226  {csn 4523  ⟨cop 4529  ∪ cuni 4799  ∪ ciun 4884   × cxp 5523  dom cdm 5525  ‘cfv 6336  (class class class)co 7151   ∈ cmpo 7153  1st c1st 7692 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299  ax-un 7460 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7694  df-2nd 7695 This theorem is referenced by:  mpoxopx0ov0  7893  mpoxopxprcov0  7894
 Copyright terms: Public domain W3C validator