MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopxnop0 Structured version   Visualization version   GIF version

Theorem mpoxopxnop0 8155
Description: If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is not an ordered pair, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopxnop0 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑦)   𝐾(𝑦)   𝑉(𝑦)

Proof of Theorem mpoxopxnop0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 neq0 4305 . . 3 (¬ (𝑉𝐹𝐾) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑉𝐹𝐾))
2 mpoxopn0yelv.f . . . . . . 7 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
32dmmpossx 8008 . . . . . 6 dom 𝐹 𝑥 ∈ V ({𝑥} × (1st𝑥))
4 elfvdm 6861 . . . . . . 7 (𝑥 ∈ (𝐹‘⟨𝑉, 𝐾⟩) → ⟨𝑉, 𝐾⟩ ∈ dom 𝐹)
5 df-ov 7356 . . . . . . 7 (𝑉𝐹𝐾) = (𝐹‘⟨𝑉, 𝐾⟩)
64, 5eleq2s 2846 . . . . . 6 (𝑥 ∈ (𝑉𝐹𝐾) → ⟨𝑉, 𝐾⟩ ∈ dom 𝐹)
73, 6sselid 3935 . . . . 5 (𝑥 ∈ (𝑉𝐹𝐾) → ⟨𝑉, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)))
8 fveq2 6826 . . . . . . 7 (𝑥 = 𝑉 → (1st𝑥) = (1st𝑉))
98opeliunxp2 5785 . . . . . 6 (⟨𝑉, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) ↔ (𝑉 ∈ V ∧ 𝐾 ∈ (1st𝑉)))
10 eluni 4864 . . . . . . . . 9 (𝐾 dom {𝑉} ↔ ∃𝑛(𝐾𝑛𝑛 ∈ dom {𝑉}))
11 ne0i 4294 . . . . . . . . . . . . 13 (𝑛 ∈ dom {𝑉} → dom {𝑉} ≠ ∅)
1211ad2antlr 727 . . . . . . . . . . . 12 (((𝐾𝑛𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → dom {𝑉} ≠ ∅)
13 dmsnn0 6160 . . . . . . . . . . . 12 (𝑉 ∈ (V × V) ↔ dom {𝑉} ≠ ∅)
1412, 13sylibr 234 . . . . . . . . . . 11 (((𝐾𝑛𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → 𝑉 ∈ (V × V))
1514ex 412 . . . . . . . . . 10 ((𝐾𝑛𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V)))
1615exlimiv 1930 . . . . . . . . 9 (∃𝑛(𝐾𝑛𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V)))
1710, 16sylbi 217 . . . . . . . 8 (𝐾 dom {𝑉} → (𝑉 ∈ V → 𝑉 ∈ (V × V)))
18 1stval 7933 . . . . . . . 8 (1st𝑉) = dom {𝑉}
1917, 18eleq2s 2846 . . . . . . 7 (𝐾 ∈ (1st𝑉) → (𝑉 ∈ V → 𝑉 ∈ (V × V)))
2019impcom 407 . . . . . 6 ((𝑉 ∈ V ∧ 𝐾 ∈ (1st𝑉)) → 𝑉 ∈ (V × V))
219, 20sylbi 217 . . . . 5 (⟨𝑉, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) → 𝑉 ∈ (V × V))
227, 21syl 17 . . . 4 (𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V))
2322exlimiv 1930 . . 3 (∃𝑥 𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V))
241, 23sylbi 217 . 2 (¬ (𝑉𝐹𝐾) = ∅ → 𝑉 ∈ (V × V))
2524con1i 147 1 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3438  c0 4286  {csn 4579  cop 4585   cuni 4861   ciun 4944   × cxp 5621  dom cdm 5623  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932
This theorem is referenced by:  mpoxopx0ov0  8156  mpoxopxprcov0  8157
  Copyright terms: Public domain W3C validator