MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopxnop0 Structured version   Visualization version   GIF version

Theorem mpoxopxnop0 8151
Description: If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is not an ordered pair, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopxnop0 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑦)   𝐾(𝑦)   𝑉(𝑦)

Proof of Theorem mpoxopxnop0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 neq0 4301 . . 3 (¬ (𝑉𝐹𝐾) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑉𝐹𝐾))
2 mpoxopn0yelv.f . . . . . . 7 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
32dmmpossx 8004 . . . . . 6 dom 𝐹 𝑥 ∈ V ({𝑥} × (1st𝑥))
4 elfvdm 6862 . . . . . . 7 (𝑥 ∈ (𝐹‘⟨𝑉, 𝐾⟩) → ⟨𝑉, 𝐾⟩ ∈ dom 𝐹)
5 df-ov 7355 . . . . . . 7 (𝑉𝐹𝐾) = (𝐹‘⟨𝑉, 𝐾⟩)
64, 5eleq2s 2851 . . . . . 6 (𝑥 ∈ (𝑉𝐹𝐾) → ⟨𝑉, 𝐾⟩ ∈ dom 𝐹)
73, 6sselid 3928 . . . . 5 (𝑥 ∈ (𝑉𝐹𝐾) → ⟨𝑉, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)))
8 fveq2 6828 . . . . . . 7 (𝑥 = 𝑉 → (1st𝑥) = (1st𝑉))
98opeliunxp2 5782 . . . . . 6 (⟨𝑉, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) ↔ (𝑉 ∈ V ∧ 𝐾 ∈ (1st𝑉)))
10 eluni 4861 . . . . . . . . 9 (𝐾 dom {𝑉} ↔ ∃𝑛(𝐾𝑛𝑛 ∈ dom {𝑉}))
11 ne0i 4290 . . . . . . . . . . . . 13 (𝑛 ∈ dom {𝑉} → dom {𝑉} ≠ ∅)
1211ad2antlr 727 . . . . . . . . . . . 12 (((𝐾𝑛𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → dom {𝑉} ≠ ∅)
13 dmsnn0 6159 . . . . . . . . . . . 12 (𝑉 ∈ (V × V) ↔ dom {𝑉} ≠ ∅)
1412, 13sylibr 234 . . . . . . . . . . 11 (((𝐾𝑛𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → 𝑉 ∈ (V × V))
1514ex 412 . . . . . . . . . 10 ((𝐾𝑛𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V)))
1615exlimiv 1931 . . . . . . . . 9 (∃𝑛(𝐾𝑛𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V)))
1710, 16sylbi 217 . . . . . . . 8 (𝐾 dom {𝑉} → (𝑉 ∈ V → 𝑉 ∈ (V × V)))
18 1stval 7929 . . . . . . . 8 (1st𝑉) = dom {𝑉}
1917, 18eleq2s 2851 . . . . . . 7 (𝐾 ∈ (1st𝑉) → (𝑉 ∈ V → 𝑉 ∈ (V × V)))
2019impcom 407 . . . . . 6 ((𝑉 ∈ V ∧ 𝐾 ∈ (1st𝑉)) → 𝑉 ∈ (V × V))
219, 20sylbi 217 . . . . 5 (⟨𝑉, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) → 𝑉 ∈ (V × V))
227, 21syl 17 . . . 4 (𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V))
2322exlimiv 1931 . . 3 (∃𝑥 𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V))
241, 23sylbi 217 . 2 (¬ (𝑉𝐹𝐾) = ∅ → 𝑉 ∈ (V × V))
2524con1i 147 1 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  Vcvv 3437  c0 4282  {csn 4575  cop 4581   cuni 4858   ciun 4941   × cxp 5617  dom cdm 5619  cfv 6486  (class class class)co 7352  cmpo 7354  1st c1st 7925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928
This theorem is referenced by:  mpoxopx0ov0  8152  mpoxopxprcov0  8153
  Copyright terms: Public domain W3C validator