Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoxopxnop0 | Structured version Visualization version GIF version |
Description: If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is not an ordered pair, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
Ref | Expression |
---|---|
mpoxopxnop0 | ⊢ (¬ 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 4279 | . . 3 ⊢ (¬ (𝑉𝐹𝐾) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑉𝐹𝐾)) | |
2 | mpoxopn0yelv.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
3 | 2 | dmmpossx 7906 | . . . . . 6 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) |
4 | elfvdm 6806 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹‘〈𝑉, 𝐾〉) → 〈𝑉, 𝐾〉 ∈ dom 𝐹) | |
5 | df-ov 7278 | . . . . . . 7 ⊢ (𝑉𝐹𝐾) = (𝐹‘〈𝑉, 𝐾〉) | |
6 | 4, 5 | eleq2s 2857 | . . . . . 6 ⊢ (𝑥 ∈ (𝑉𝐹𝐾) → 〈𝑉, 𝐾〉 ∈ dom 𝐹) |
7 | 3, 6 | sselid 3919 | . . . . 5 ⊢ (𝑥 ∈ (𝑉𝐹𝐾) → 〈𝑉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥))) |
8 | fveq2 6774 | . . . . . . 7 ⊢ (𝑥 = 𝑉 → (1st ‘𝑥) = (1st ‘𝑉)) | |
9 | 8 | opeliunxp2 5747 | . . . . . 6 ⊢ (〈𝑉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) ↔ (𝑉 ∈ V ∧ 𝐾 ∈ (1st ‘𝑉))) |
10 | eluni 4842 | . . . . . . . . 9 ⊢ (𝐾 ∈ ∪ dom {𝑉} ↔ ∃𝑛(𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉})) | |
11 | ne0i 4268 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ dom {𝑉} → dom {𝑉} ≠ ∅) | |
12 | 11 | ad2antlr 724 | . . . . . . . . . . . 12 ⊢ (((𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → dom {𝑉} ≠ ∅) |
13 | dmsnn0 6110 | . . . . . . . . . . . 12 ⊢ (𝑉 ∈ (V × V) ↔ dom {𝑉} ≠ ∅) | |
14 | 12, 13 | sylibr 233 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) ∧ 𝑉 ∈ V) → 𝑉 ∈ (V × V)) |
15 | 14 | ex 413 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
16 | 15 | exlimiv 1933 | . . . . . . . . 9 ⊢ (∃𝑛(𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom {𝑉}) → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
17 | 10, 16 | sylbi 216 | . . . . . . . 8 ⊢ (𝐾 ∈ ∪ dom {𝑉} → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
18 | 1stval 7833 | . . . . . . . 8 ⊢ (1st ‘𝑉) = ∪ dom {𝑉} | |
19 | 17, 18 | eleq2s 2857 | . . . . . . 7 ⊢ (𝐾 ∈ (1st ‘𝑉) → (𝑉 ∈ V → 𝑉 ∈ (V × V))) |
20 | 19 | impcom 408 | . . . . . 6 ⊢ ((𝑉 ∈ V ∧ 𝐾 ∈ (1st ‘𝑉)) → 𝑉 ∈ (V × V)) |
21 | 9, 20 | sylbi 216 | . . . . 5 ⊢ (〈𝑉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) → 𝑉 ∈ (V × V)) |
22 | 7, 21 | syl 17 | . . . 4 ⊢ (𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V)) |
23 | 22 | exlimiv 1933 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝑉𝐹𝐾) → 𝑉 ∈ (V × V)) |
24 | 1, 23 | sylbi 216 | . 2 ⊢ (¬ (𝑉𝐹𝐾) = ∅ → 𝑉 ∈ (V × V)) |
25 | 24 | con1i 147 | 1 ⊢ (¬ 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 {csn 4561 〈cop 4567 ∪ cuni 4839 ∪ ciun 4924 × cxp 5587 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 1st c1st 7829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 |
This theorem is referenced by: mpoxopx0ov0 8032 mpoxopxprcov0 8033 |
Copyright terms: Public domain | W3C validator |