Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosscnvssid5 | Structured version Visualization version GIF version |
Description: Equivalent expressions for the class of cosets by the converse of the relation 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
cosscnvssid5 | ⊢ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosscnvssid4 36574 | . . 3 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥) | |
2 | 1 | anbi1i 623 | . 2 ⊢ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) |
3 | inecmo3 36472 | . 2 ⊢ ((∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 843 ∀wal 1539 = wceq 1541 ∃*wmo 2539 ∀wral 3065 ∩ cin 3890 ⊆ wss 3891 ∅c0 4261 class class class wbr 5078 I cid 5487 ◡ccnv 5587 dom cdm 5588 Rel wrel 5593 [cec 8470 ≀ ccoss 36312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rmo 3073 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ec 8474 df-coss 36516 |
This theorem is referenced by: dfdisjs5 36802 dfdisjALTV5 36807 eldisjs5 36816 |
Copyright terms: Public domain | W3C validator |