Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosscnvssid5 Structured version   Visualization version   GIF version

Theorem cosscnvssid5 38460
Description: Equivalent expressions for the class of cosets by the converse of the relation 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
cosscnvssid5 (( ≀ 𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅))
Distinct variable group:   𝑢,𝑅,𝑣

Proof of Theorem cosscnvssid5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cosscnvssid4 38459 . . 3 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)
21anbi1i 624 . 2 (( ≀ 𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅))
3 inecmo3 38343 . 2 ((∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅))
42, 3bitr4i 278 1 (( ≀ 𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  wal 1535   = wceq 1537  ∃*wmo 2536  wral 3059  cin 3962  wss 3963  c0 4339   class class class wbr 5148   I cid 5582  ccnv 5688  dom cdm 5689  Rel wrel 5694  [cec 8742  ccoss 38162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rmo 3378  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ec 8746  df-coss 38393
This theorem is referenced by:  dfdisjs5  38694  dfdisjALTV5  38699  eldisjs5  38708
  Copyright terms: Public domain W3C validator