| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjs4 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| eldisjs4 | ⊢ (𝑅 ∈ Disjs ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ 𝑅 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldisjs2 38711 | . 2 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) | |
| 2 | cosscnvssid4 38464 | . . 3 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ (( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ 𝑅 ∈ Rels )) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝑅 ∈ Disjs ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ 𝑅 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∃*wmo 2531 ⊆ wss 3903 class class class wbr 5092 I cid 5513 ◡ccnv 5618 ≀ ccoss 38165 Rels crels 38167 Disjs cdisjs 38198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-coss 38398 df-rels 38472 df-ssr 38485 df-cnvrefs 38512 df-cnvrefrels 38513 df-disjss 38691 df-disjs 38692 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |