![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjALTV4 | Structured version Visualization version GIF version |
Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV4 38388. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
dfdisjALTV4 | ⊢ ( Disj 𝑅 ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjALTV2 38412 | . 2 ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) | |
2 | cosscnvssid4 38175 | . . 3 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥) | |
3 | 2 | anbi1i 622 | . 2 ⊢ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) |
4 | 1, 3 | bitri 274 | 1 ⊢ ( Disj 𝑅 ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∀wal 1532 ∃*wmo 2527 ⊆ wss 3947 class class class wbr 5153 I cid 5579 ◡ccnv 5681 Rel wrel 5687 ≀ ccoss 37876 Disj wdisjALTV 37910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-coss 38109 df-cnvrefrel 38225 df-disjALTV 38403 |
This theorem is referenced by: dfeldisj4 38418 disjres 38442 disjALTV0 38452 disjim 38479 |
Copyright terms: Public domain | W3C validator |