| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphnmfval | Structured version Visualization version GIF version | ||
| Description: The value of the norm in a subcomplex pre-Hilbert space is the square root of the inner product of a vector with itself. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmsq.v | ⊢ 𝑉 = (Base‘𝑊) |
| nmsq.h | ⊢ , = (·𝑖‘𝑊) |
| nmsq.n | ⊢ 𝑁 = (norm‘𝑊) |
| Ref | Expression |
|---|---|
| cphnmfval | ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | nmsq.h | . . 3 ⊢ , = (·𝑖‘𝑊) | |
| 3 | nmsq.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
| 4 | eqid 2731 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2731 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | 1, 2, 3, 4, 5 | iscph 25097 | . 2 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
| 7 | 6 | simp3bi 1147 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ↦ cmpt 5170 “ cima 5617 ‘cfv 6481 (class class class)co 7346 0cc0 11006 +∞cpnf 11143 [,)cico 13247 √csqrt 15140 Basecbs 17120 ↾s cress 17141 Scalarcsca 17164 ·𝑖cip 17166 ℂfldccnfld 21291 PreHilcphl 21561 normcnm 24491 NrmModcnlm 24495 ℂPreHilccph 25093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fv 6489 df-ov 7349 df-cph 25095 |
| This theorem is referenced by: cphnm 25120 cphnmf 25122 cphtcphnm 25157 cphsscph 25178 |
| Copyright terms: Public domain | W3C validator |