| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphnmfval | Structured version Visualization version GIF version | ||
| Description: The value of the norm in a subcomplex pre-Hilbert space is the square root of the inner product of a vector with itself. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmsq.v | ⊢ 𝑉 = (Base‘𝑊) |
| nmsq.h | ⊢ , = (·𝑖‘𝑊) |
| nmsq.n | ⊢ 𝑁 = (norm‘𝑊) |
| Ref | Expression |
|---|---|
| cphnmfval | ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | nmsq.h | . . 3 ⊢ , = (·𝑖‘𝑊) | |
| 3 | nmsq.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
| 4 | eqid 2734 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2734 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | 1, 2, 3, 4, 5 | iscph 25140 | . 2 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) |
| 7 | 6 | simp3bi 1147 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 ⊆ wss 3931 ↦ cmpt 5205 “ cima 5668 ‘cfv 6541 (class class class)co 7413 0cc0 11137 +∞cpnf 11274 [,)cico 13371 √csqrt 15254 Basecbs 17229 ↾s cress 17252 Scalarcsca 17276 ·𝑖cip 17278 ℂfldccnfld 21326 PreHilcphl 21596 normcnm 24533 NrmModcnlm 24537 ℂPreHilccph 25136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-xp 5671 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fv 6549 df-ov 7416 df-cph 25138 |
| This theorem is referenced by: cphnm 25163 cphnmf 25165 cphtcphnm 25200 cphsscph 25221 |
| Copyright terms: Public domain | W3C validator |