MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphnmfval Structured version   Visualization version   GIF version

Theorem cphnmfval 25119
Description: The value of the norm in a subcomplex pre-Hilbert space is the square root of the inner product of a vector with itself. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
nmsq.v 𝑉 = (Base‘𝑊)
nmsq.h , = (·𝑖𝑊)
nmsq.n 𝑁 = (norm‘𝑊)
Assertion
Ref Expression
cphnmfval (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Distinct variable groups:   𝑥, ,   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem cphnmfval
StepHypRef Expression
1 nmsq.v . . 3 𝑉 = (Base‘𝑊)
2 nmsq.h . . 3 , = (·𝑖𝑊)
3 nmsq.n . . 3 𝑁 = (norm‘𝑊)
4 eqid 2731 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2731 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
61, 2, 3, 4, 5iscph 25097 . 2 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
76simp3bi 1147 1 (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cin 3896  wss 3897  cmpt 5170  cima 5617  cfv 6481  (class class class)co 7346  0cc0 11006  +∞cpnf 11143  [,)cico 13247  csqrt 15140  Basecbs 17120  s cress 17141  Scalarcsca 17164  ·𝑖cip 17166  fldccnfld 21291  PreHilcphl 21561  normcnm 24491  NrmModcnlm 24495  ℂPreHilccph 25093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fv 6489  df-ov 7349  df-cph 25095
This theorem is referenced by:  cphnm  25120  cphnmf  25122  cphtcphnm  25157  cphsscph  25178
  Copyright terms: Public domain W3C validator