MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphnmfval Structured version   Visualization version   GIF version

Theorem cphnmfval 25251
Description: The value of the norm in a subcomplex pre-Hilbert space is the square root of the inner product of a vector with itself. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
nmsq.v 𝑉 = (Base‘𝑊)
nmsq.h , = (·𝑖𝑊)
nmsq.n 𝑁 = (norm‘𝑊)
Assertion
Ref Expression
cphnmfval (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Distinct variable groups:   𝑥, ,   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem cphnmfval
StepHypRef Expression
1 nmsq.v . . 3 𝑉 = (Base‘𝑊)
2 nmsq.h . . 3 , = (·𝑖𝑊)
3 nmsq.n . . 3 𝑁 = (norm‘𝑊)
4 eqid 2737 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2737 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
61, 2, 3, 4, 5iscph 25229 . 2 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
76simp3bi 1148 1 (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1539  wcel 2108  cin 3965  wss 3966  cmpt 5234  cima 5696  cfv 6569  (class class class)co 7438  0cc0 11162  +∞cpnf 11299  [,)cico 13395  csqrt 15278  Basecbs 17254  s cress 17283  Scalarcsca 17310  ·𝑖cip 17312  fldccnfld 21391  PreHilcphl 21669  normcnm 24614  NrmModcnlm 24618  ℂPreHilccph 25225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5315
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-xp 5699  df-cnv 5701  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fv 6577  df-ov 7441  df-cph 25227
This theorem is referenced by:  cphnm  25252  cphnmf  25254  cphtcphnm  25289  cphsscph  25310
  Copyright terms: Public domain W3C validator