Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphipcl | Structured version Visualization version GIF version |
Description: An inner product is a member of the complex numbers. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
nmsq.v | ⊢ 𝑉 = (Base‘𝑊) |
nmsq.h | ⊢ , = (·𝑖‘𝑊) |
Ref | Expression |
---|---|
cphipcl | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2736 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | 1, 2 | cphsubrg 24451 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld)) |
4 | cnfldbas 20708 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
5 | 4 | subrgss 20131 | . . . 4 ⊢ ((Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld) → (Base‘(Scalar‘𝑊)) ⊆ ℂ) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → (Base‘(Scalar‘𝑊)) ⊆ ℂ) |
7 | 6 | 3ad2ant1 1132 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Base‘(Scalar‘𝑊)) ⊆ ℂ) |
8 | cphphl 24442 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
9 | nmsq.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
10 | nmsq.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
11 | 1, 9, 10, 2 | ipcl 20945 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊))) |
12 | 8, 11 | syl3an1 1162 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊))) |
13 | 7, 12 | sseldd 3933 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ‘cfv 6480 (class class class)co 7338 ℂcc 10971 Basecbs 17010 Scalarcsca 17063 ·𝑖cip 17065 SubRingcsubrg 20126 ℂfldccnfld 20704 PreHilcphl 20936 ℂPreHilccph 24437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-addf 11052 ax-mulf 11053 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-tpos 8113 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-div 11735 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-dec 12540 df-uz 12685 df-fz 13342 df-seq 13824 df-exp 13885 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-starv 17075 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-unif 17083 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-subg 18849 df-ghm 18929 df-cmn 19484 df-mgp 19817 df-ur 19834 df-ring 19881 df-cring 19882 df-oppr 19958 df-dvdsr 19979 df-unit 19980 df-drng 20096 df-subrg 20128 df-lmhm 20391 df-lvec 20472 df-sra 20541 df-rgmod 20542 df-cnfld 20705 df-phl 20938 df-cph 24439 |
This theorem is referenced by: nmsq 24465 cphipipcj 24471 cphassr 24483 cph2ass 24484 cphpyth 24487 cphipval2 24512 ipcnlem2 24515 pjthlem1 24708 |
Copyright terms: Public domain | W3C validator |