| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphnm | Structured version Visualization version GIF version | ||
| Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmsq.v | ⊢ 𝑉 = (Base‘𝑊) |
| nmsq.h | ⊢ , = (·𝑖‘𝑊) |
| nmsq.n | ⊢ 𝑁 = (norm‘𝑊) |
| Ref | Expression |
|---|---|
| cphnm | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) = (√‘(𝐴 , 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | nmsq.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 3 | nmsq.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
| 4 | 1, 2, 3 | cphnmfval 25090 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| 5 | 4 | fveq1d 6824 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑁‘𝐴) = ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴)) |
| 6 | oveq12 7358 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴)) | |
| 7 | 6 | anidms 566 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴)) |
| 8 | 7 | fveq2d 6826 | . . 3 ⊢ (𝑥 = 𝐴 → (√‘(𝑥 , 𝑥)) = (√‘(𝐴 , 𝐴))) |
| 9 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) | |
| 10 | fvex 6835 | . . 3 ⊢ (√‘(𝐴 , 𝐴)) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6930 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴) = (√‘(𝐴 , 𝐴))) |
| 12 | 5, 11 | sylan9eq 2784 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) = (√‘(𝐴 , 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 √csqrt 15140 Basecbs 17120 ·𝑖cip 17166 normcnm 24462 ℂPreHilccph 25064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-cph 25066 |
| This theorem is referenced by: nmsq 25092 |
| Copyright terms: Public domain | W3C validator |