MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphnm Structured version   Visualization version   GIF version

Theorem cphnm 24710
Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
nmsq.v 𝑉 = (Baseβ€˜π‘Š)
nmsq.h , = (Β·π‘–β€˜π‘Š)
nmsq.n 𝑁 = (normβ€˜π‘Š)
Assertion
Ref Expression
cphnm ((π‘Š ∈ β„‚PreHil ∧ 𝐴 ∈ 𝑉) β†’ (π‘β€˜π΄) = (βˆšβ€˜(𝐴 , 𝐴)))

Proof of Theorem cphnm
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 nmsq.v . . . 4 𝑉 = (Baseβ€˜π‘Š)
2 nmsq.h . . . 4 , = (Β·π‘–β€˜π‘Š)
3 nmsq.n . . . 4 𝑁 = (normβ€˜π‘Š)
41, 2, 3cphnmfval 24709 . . 3 (π‘Š ∈ β„‚PreHil β†’ 𝑁 = (π‘₯ ∈ 𝑉 ↦ (βˆšβ€˜(π‘₯ , π‘₯))))
54fveq1d 6894 . 2 (π‘Š ∈ β„‚PreHil β†’ (π‘β€˜π΄) = ((π‘₯ ∈ 𝑉 ↦ (βˆšβ€˜(π‘₯ , π‘₯)))β€˜π΄))
6 oveq12 7418 . . . . 5 ((π‘₯ = 𝐴 ∧ π‘₯ = 𝐴) β†’ (π‘₯ , π‘₯) = (𝐴 , 𝐴))
76anidms 568 . . . 4 (π‘₯ = 𝐴 β†’ (π‘₯ , π‘₯) = (𝐴 , 𝐴))
87fveq2d 6896 . . 3 (π‘₯ = 𝐴 β†’ (βˆšβ€˜(π‘₯ , π‘₯)) = (βˆšβ€˜(𝐴 , 𝐴)))
9 eqid 2733 . . 3 (π‘₯ ∈ 𝑉 ↦ (βˆšβ€˜(π‘₯ , π‘₯))) = (π‘₯ ∈ 𝑉 ↦ (βˆšβ€˜(π‘₯ , π‘₯)))
10 fvex 6905 . . 3 (βˆšβ€˜(𝐴 , 𝐴)) ∈ V
118, 9, 10fvmpt 6999 . 2 (𝐴 ∈ 𝑉 β†’ ((π‘₯ ∈ 𝑉 ↦ (βˆšβ€˜(π‘₯ , π‘₯)))β€˜π΄) = (βˆšβ€˜(𝐴 , 𝐴)))
125, 11sylan9eq 2793 1 ((π‘Š ∈ β„‚PreHil ∧ 𝐴 ∈ 𝑉) β†’ (π‘β€˜π΄) = (βˆšβ€˜(𝐴 , 𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   ↦ cmpt 5232  β€˜cfv 6544  (class class class)co 7409  βˆšcsqrt 15180  Basecbs 17144  Β·π‘–cip 17202  normcnm 24085  β„‚PreHilccph 24683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-cph 24685
This theorem is referenced by:  nmsq  24711
  Copyright terms: Public domain W3C validator