Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphnm | Structured version Visualization version GIF version |
Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
nmsq.v | ⊢ 𝑉 = (Base‘𝑊) |
nmsq.h | ⊢ , = (·𝑖‘𝑊) |
nmsq.n | ⊢ 𝑁 = (norm‘𝑊) |
Ref | Expression |
---|---|
cphnm | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) = (√‘(𝐴 , 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmsq.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | nmsq.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
3 | nmsq.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
4 | 1, 2, 3 | cphnmfval 24366 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
5 | 4 | fveq1d 6768 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑁‘𝐴) = ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴)) |
6 | oveq12 7276 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴)) | |
7 | 6 | anidms 567 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴)) |
8 | 7 | fveq2d 6770 | . . 3 ⊢ (𝑥 = 𝐴 → (√‘(𝑥 , 𝑥)) = (√‘(𝐴 , 𝐴))) |
9 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) | |
10 | fvex 6779 | . . 3 ⊢ (√‘(𝐴 , 𝐴)) ∈ V | |
11 | 8, 9, 10 | fvmpt 6867 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴) = (√‘(𝐴 , 𝐴))) |
12 | 5, 11 | sylan9eq 2798 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) = (√‘(𝐴 , 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5156 ‘cfv 6426 (class class class)co 7267 √csqrt 14954 Basecbs 16922 ·𝑖cip 16977 normcnm 23742 ℂPreHilccph 24340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fv 6434 df-ov 7270 df-cph 24342 |
This theorem is referenced by: nmsq 24368 |
Copyright terms: Public domain | W3C validator |