MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphnm Structured version   Visualization version   GIF version

Theorem cphnm 25100
Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
nmsq.v 𝑉 = (Base‘𝑊)
nmsq.h , = (·𝑖𝑊)
nmsq.n 𝑁 = (norm‘𝑊)
Assertion
Ref Expression
cphnm ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → (𝑁𝐴) = (√‘(𝐴 , 𝐴)))

Proof of Theorem cphnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmsq.v . . . 4 𝑉 = (Base‘𝑊)
2 nmsq.h . . . 4 , = (·𝑖𝑊)
3 nmsq.n . . . 4 𝑁 = (norm‘𝑊)
41, 2, 3cphnmfval 25099 . . 3 (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
54fveq1d 6863 . 2 (𝑊 ∈ ℂPreHil → (𝑁𝐴) = ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴))
6 oveq12 7399 . . . . 5 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴))
76anidms 566 . . . 4 (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴))
87fveq2d 6865 . . 3 (𝑥 = 𝐴 → (√‘(𝑥 , 𝑥)) = (√‘(𝐴 , 𝐴)))
9 eqid 2730 . . 3 (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))
10 fvex 6874 . . 3 (√‘(𝐴 , 𝐴)) ∈ V
118, 9, 10fvmpt 6971 . 2 (𝐴𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴) = (√‘(𝐴 , 𝐴)))
125, 11sylan9eq 2785 1 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → (𝑁𝐴) = (√‘(𝐴 , 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5191  cfv 6514  (class class class)co 7390  csqrt 15206  Basecbs 17186  ·𝑖cip 17232  normcnm 24471  ℂPreHilccph 25073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-cph 25075
This theorem is referenced by:  nmsq  25101
  Copyright terms: Public domain W3C validator