| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphnm | Structured version Visualization version GIF version | ||
| Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmsq.v | ⊢ 𝑉 = (Base‘𝑊) |
| nmsq.h | ⊢ , = (·𝑖‘𝑊) |
| nmsq.n | ⊢ 𝑁 = (norm‘𝑊) |
| Ref | Expression |
|---|---|
| cphnm | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) = (√‘(𝐴 , 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | nmsq.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 3 | nmsq.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
| 4 | 1, 2, 3 | cphnmfval 25099 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
| 5 | 4 | fveq1d 6863 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑁‘𝐴) = ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴)) |
| 6 | oveq12 7399 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴)) | |
| 7 | 6 | anidms 566 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴)) |
| 8 | 7 | fveq2d 6865 | . . 3 ⊢ (𝑥 = 𝐴 → (√‘(𝑥 , 𝑥)) = (√‘(𝐴 , 𝐴))) |
| 9 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) | |
| 10 | fvex 6874 | . . 3 ⊢ (√‘(𝐴 , 𝐴)) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6971 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴) = (√‘(𝐴 , 𝐴))) |
| 12 | 5, 11 | sylan9eq 2785 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) = (√‘(𝐴 , 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 √csqrt 15206 Basecbs 17186 ·𝑖cip 17232 normcnm 24471 ℂPreHilccph 25073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-cph 25075 |
| This theorem is referenced by: nmsq 25101 |
| Copyright terms: Public domain | W3C validator |