MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphnm Structured version   Visualization version   GIF version

Theorem cphnm 24357
Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
nmsq.v 𝑉 = (Base‘𝑊)
nmsq.h , = (·𝑖𝑊)
nmsq.n 𝑁 = (norm‘𝑊)
Assertion
Ref Expression
cphnm ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → (𝑁𝐴) = (√‘(𝐴 , 𝐴)))

Proof of Theorem cphnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmsq.v . . . 4 𝑉 = (Base‘𝑊)
2 nmsq.h . . . 4 , = (·𝑖𝑊)
3 nmsq.n . . . 4 𝑁 = (norm‘𝑊)
41, 2, 3cphnmfval 24356 . . 3 (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
54fveq1d 6776 . 2 (𝑊 ∈ ℂPreHil → (𝑁𝐴) = ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴))
6 oveq12 7284 . . . . 5 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴))
76anidms 567 . . . 4 (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴))
87fveq2d 6778 . . 3 (𝑥 = 𝐴 → (√‘(𝑥 , 𝑥)) = (√‘(𝐴 , 𝐴)))
9 eqid 2738 . . 3 (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))
10 fvex 6787 . . 3 (√‘(𝐴 , 𝐴)) ∈ V
118, 9, 10fvmpt 6875 . 2 (𝐴𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴) = (√‘(𝐴 , 𝐴)))
125, 11sylan9eq 2798 1 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → (𝑁𝐴) = (√‘(𝐴 , 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cmpt 5157  cfv 6433  (class class class)co 7275  csqrt 14944  Basecbs 16912  ·𝑖cip 16967  normcnm 23732  ℂPreHilccph 24330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-cph 24332
This theorem is referenced by:  nmsq  24358
  Copyright terms: Public domain W3C validator