Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphnm | Structured version Visualization version GIF version |
Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
nmsq.v | ⊢ 𝑉 = (Base‘𝑊) |
nmsq.h | ⊢ , = (·𝑖‘𝑊) |
nmsq.n | ⊢ 𝑁 = (norm‘𝑊) |
Ref | Expression |
---|---|
cphnm | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) = (√‘(𝐴 , 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmsq.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | nmsq.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
3 | nmsq.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
4 | 1, 2, 3 | cphnmfval 24261 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
5 | 4 | fveq1d 6758 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑁‘𝐴) = ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴)) |
6 | oveq12 7264 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴)) | |
7 | 6 | anidms 566 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴)) |
8 | 7 | fveq2d 6760 | . . 3 ⊢ (𝑥 = 𝐴 → (√‘(𝑥 , 𝑥)) = (√‘(𝐴 , 𝐴))) |
9 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) | |
10 | fvex 6769 | . . 3 ⊢ (√‘(𝐴 , 𝐴)) ∈ V | |
11 | 8, 9, 10 | fvmpt 6857 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴) = (√‘(𝐴 , 𝐴))) |
12 | 5, 11 | sylan9eq 2799 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) = (√‘(𝐴 , 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 √csqrt 14872 Basecbs 16840 ·𝑖cip 16893 normcnm 23638 ℂPreHilccph 24235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-cph 24237 |
This theorem is referenced by: nmsq 24263 |
Copyright terms: Public domain | W3C validator |