![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphnm | Structured version Visualization version GIF version |
Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
nmsq.v | ⊢ 𝑉 = (Base‘𝑊) |
nmsq.h | ⊢ , = (·𝑖‘𝑊) |
nmsq.n | ⊢ 𝑁 = (norm‘𝑊) |
Ref | Expression |
---|---|
cphnm | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) = (√‘(𝐴 , 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmsq.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | nmsq.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
3 | nmsq.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
4 | 1, 2, 3 | cphnmfval 25245 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
5 | 4 | fveq1d 6922 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑁‘𝐴) = ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴)) |
6 | oveq12 7457 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴)) | |
7 | 6 | anidms 566 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴)) |
8 | 7 | fveq2d 6924 | . . 3 ⊢ (𝑥 = 𝐴 → (√‘(𝑥 , 𝑥)) = (√‘(𝐴 , 𝐴))) |
9 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) | |
10 | fvex 6933 | . . 3 ⊢ (√‘(𝐴 , 𝐴)) ∈ V | |
11 | 8, 9, 10 | fvmpt 7029 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝐴) = (√‘(𝐴 , 𝐴))) |
12 | 5, 11 | sylan9eq 2800 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) = (√‘(𝐴 , 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 √csqrt 15282 Basecbs 17258 ·𝑖cip 17316 normcnm 24610 ℂPreHilccph 25219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-cph 25221 |
This theorem is referenced by: nmsq 25247 |
Copyright terms: Public domain | W3C validator |