![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphnmf | Structured version Visualization version GIF version |
Description: The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015.) |
Ref | Expression |
---|---|
nmsq.v | β’ π = (Baseβπ) |
nmsq.h | β’ , = (Β·πβπ) |
nmsq.n | β’ π = (normβπ) |
cphnmcl.f | β’ πΉ = (Scalarβπ) |
cphnmcl.k | β’ πΎ = (BaseβπΉ) |
Ref | Expression |
---|---|
cphnmf | β’ (π β βPreHil β π:πβΆπΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmsq.v | . . 3 β’ π = (Baseβπ) | |
2 | nmsq.h | . . 3 β’ , = (Β·πβπ) | |
3 | nmsq.n | . . 3 β’ π = (normβπ) | |
4 | 1, 2, 3 | cphnmfval 24700 | . 2 β’ (π β βPreHil β π = (π₯ β π β¦ (ββ(π₯ , π₯)))) |
5 | simpl 483 | . . 3 β’ ((π β βPreHil β§ π₯ β π) β π β βPreHil) | |
6 | cphphl 24679 | . . . . 5 β’ (π β βPreHil β π β PreHil) | |
7 | 6 | adantr 481 | . . . 4 β’ ((π β βPreHil β§ π₯ β π) β π β PreHil) |
8 | simpr 485 | . . . 4 β’ ((π β βPreHil β§ π₯ β π) β π₯ β π) | |
9 | cphnmcl.f | . . . . 5 β’ πΉ = (Scalarβπ) | |
10 | cphnmcl.k | . . . . 5 β’ πΎ = (BaseβπΉ) | |
11 | 9, 2, 1, 10 | ipcl 21177 | . . . 4 β’ ((π β PreHil β§ π₯ β π β§ π₯ β π) β (π₯ , π₯) β πΎ) |
12 | 7, 8, 8, 11 | syl3anc 1371 | . . 3 β’ ((π β βPreHil β§ π₯ β π) β (π₯ , π₯) β πΎ) |
13 | 1, 2, 3 | nmsq 24702 | . . . 4 β’ ((π β βPreHil β§ π₯ β π) β ((πβπ₯)β2) = (π₯ , π₯)) |
14 | cphngp 24681 | . . . . . 6 β’ (π β βPreHil β π β NrmGrp) | |
15 | 1, 3 | nmcl 24116 | . . . . . 6 β’ ((π β NrmGrp β§ π₯ β π) β (πβπ₯) β β) |
16 | 14, 15 | sylan 580 | . . . . 5 β’ ((π β βPreHil β§ π₯ β π) β (πβπ₯) β β) |
17 | 16 | resqcld 14086 | . . . 4 β’ ((π β βPreHil β§ π₯ β π) β ((πβπ₯)β2) β β) |
18 | 13, 17 | eqeltrrd 2834 | . . 3 β’ ((π β βPreHil β§ π₯ β π) β (π₯ , π₯) β β) |
19 | 16 | sqge0d 14098 | . . . 4 β’ ((π β βPreHil β§ π₯ β π) β 0 β€ ((πβπ₯)β2)) |
20 | 19, 13 | breqtrd 5173 | . . 3 β’ ((π β βPreHil β§ π₯ β π) β 0 β€ (π₯ , π₯)) |
21 | 9, 10 | cphsqrtcl 24692 | . . 3 β’ ((π β βPreHil β§ ((π₯ , π₯) β πΎ β§ (π₯ , π₯) β β β§ 0 β€ (π₯ , π₯))) β (ββ(π₯ , π₯)) β πΎ) |
22 | 5, 12, 18, 20, 21 | syl13anc 1372 | . 2 β’ ((π β βPreHil β§ π₯ β π) β (ββ(π₯ , π₯)) β πΎ) |
23 | 4, 22 | fmpt3d 7112 | 1 β’ (π β βPreHil β π:πβΆπΎ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5147 βΆwf 6536 βcfv 6540 (class class class)co 7405 βcr 11105 0cc0 11106 β€ cle 11245 2c2 12263 βcexp 14023 βcsqrt 15176 Basecbs 17140 Scalarcsca 17196 Β·πcip 17198 PreHilcphl 21168 normcnm 24076 NrmGrpcngp 24077 βPreHilccph 24674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ico 13326 df-fz 13481 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-0g 17383 df-topgen 17385 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-subg 18997 df-ghm 19084 df-cmn 19644 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-drng 20309 df-subrg 20353 df-lmhm 20625 df-lvec 20706 df-sra 20777 df-rgmod 20778 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-cnfld 20937 df-phl 21170 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-xms 23817 df-ms 23818 df-nm 24082 df-ngp 24083 df-nlm 24086 df-cph 24676 |
This theorem is referenced by: cphnmcl 24704 |
Copyright terms: Public domain | W3C validator |