![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphnmf | Structured version Visualization version GIF version |
Description: The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015.) |
Ref | Expression |
---|---|
nmsq.v | ⊢ 𝑉 = (Base‘𝑊) |
nmsq.h | ⊢ , = (·𝑖‘𝑊) |
nmsq.n | ⊢ 𝑁 = (norm‘𝑊) |
cphnmcl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphnmcl.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cphnmf | ⊢ (𝑊 ∈ ℂPreHil → 𝑁:𝑉⟶𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmsq.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | nmsq.h | . . 3 ⊢ , = (·𝑖‘𝑊) | |
3 | nmsq.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
4 | 1, 2, 3 | cphnmfval 25206 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) |
5 | simpl 481 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ ℂPreHil) | |
6 | cphphl 25185 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
7 | 6 | adantr 479 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ PreHil) |
8 | simpr 483 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) | |
9 | cphnmcl.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
10 | cphnmcl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
11 | 9, 2, 1, 10 | ipcl 21623 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → (𝑥 , 𝑥) ∈ 𝐾) |
12 | 7, 8, 8, 11 | syl3anc 1368 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → (𝑥 , 𝑥) ∈ 𝐾) |
13 | 1, 2, 3 | nmsq 25208 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → ((𝑁‘𝑥)↑2) = (𝑥 , 𝑥)) |
14 | cphngp 25187 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) | |
15 | 1, 3 | nmcl 24611 | . . . . . 6 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → (𝑁‘𝑥) ∈ ℝ) |
16 | 14, 15 | sylan 578 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → (𝑁‘𝑥) ∈ ℝ) |
17 | 16 | resqcld 14136 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → ((𝑁‘𝑥)↑2) ∈ ℝ) |
18 | 13, 17 | eqeltrrd 2827 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → (𝑥 , 𝑥) ∈ ℝ) |
19 | 16 | sqge0d 14148 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → 0 ≤ ((𝑁‘𝑥)↑2)) |
20 | 19, 13 | breqtrd 5170 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
21 | 9, 10 | cphsqrtcl 25198 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ ((𝑥 , 𝑥) ∈ 𝐾 ∧ (𝑥 , 𝑥) ∈ ℝ ∧ 0 ≤ (𝑥 , 𝑥))) → (√‘(𝑥 , 𝑥)) ∈ 𝐾) |
22 | 5, 12, 18, 20, 21 | syl13anc 1369 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → (√‘(𝑥 , 𝑥)) ∈ 𝐾) |
23 | 4, 22 | fmpt3d 7120 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑁:𝑉⟶𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 class class class wbr 5144 ⟶wf 6540 ‘cfv 6544 (class class class)co 7414 ℝcr 11146 0cc0 11147 ≤ cle 11288 2c2 12311 ↑cexp 14073 √csqrt 15231 Basecbs 17206 Scalarcsca 17262 ·𝑖cip 17264 PreHilcphl 21614 normcnm 24571 NrmGrpcngp 24572 ℂPreHilccph 25180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-pre-sup 11225 ax-addf 11226 ax-mulf 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8231 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9476 df-inf 9477 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-div 11911 df-nn 12257 df-2 12319 df-3 12320 df-4 12321 df-5 12322 df-6 12323 df-7 12324 df-8 12325 df-9 12326 df-n0 12517 df-z 12603 df-dec 12722 df-uz 12867 df-q 12977 df-rp 13021 df-xneg 13138 df-xadd 13139 df-xmul 13140 df-ico 13376 df-fz 13531 df-seq 14014 df-exp 14074 df-cj 15097 df-re 15098 df-im 15099 df-sqrt 15233 df-abs 15234 df-struct 17142 df-sets 17159 df-slot 17177 df-ndx 17189 df-base 17207 df-ress 17236 df-plusg 17272 df-mulr 17273 df-starv 17274 df-sca 17275 df-vsca 17276 df-ip 17277 df-tset 17278 df-ple 17279 df-ds 17281 df-unif 17282 df-0g 17449 df-topgen 17451 df-mgm 18626 df-sgrp 18705 df-mnd 18721 df-grp 18924 df-minusg 18925 df-subg 19111 df-ghm 19201 df-cmn 19774 df-abl 19775 df-mgp 20112 df-rng 20130 df-ur 20159 df-ring 20212 df-cring 20213 df-oppr 20310 df-dvdsr 20333 df-unit 20334 df-subrg 20547 df-drng 20703 df-lmhm 20994 df-lvec 21075 df-sra 21145 df-rgmod 21146 df-psmet 21329 df-xmet 21330 df-met 21331 df-bl 21332 df-mopn 21333 df-cnfld 21338 df-phl 21616 df-top 22882 df-topon 22899 df-topsp 22921 df-bases 22935 df-xms 24312 df-ms 24313 df-nm 24577 df-ngp 24578 df-nlm 24581 df-cph 25182 |
This theorem is referenced by: cphnmcl 25210 |
Copyright terms: Public domain | W3C validator |